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Abstract

Based on several studies, the �y retina is submitted to periodic micro-movements. Several
sensors were designed in the lab mimicking this principle. It was therefore established that this
vibration could be used in the localization of contrasts with precision and endowed the �y vision
with hyperacuity. Inspired by the �y compound eye properties, such as the Angular sensitivity
and the periodic scanning, the sensors were able to localize a contrast very precisely over a small
�eld of view limited to only two pixels.

In this thesis, an arti�cial compound eye endowed with a wide �eld of view was used. First,
an algorithm that fused the local position measurements of di�erent photosensor (pixel + lens)
pairs is proposed. It enables a robot named HyperRob to hover above a naturally textured
pattern.

Localizing a contrast precisely over the entire �eld of view remains di�cult with this �rst
solution. But, using 2 pairs of photosensors, a second algorithm allows having, in the case of
a bar, a more linear position measurement and its subtended angle too. A calibration process
was involved to have a map of the pair measurements relative to the angular position and
subtended angle of the bar. It showed some good results, especially in steady conditions, but
also a dependency on the contrasts seen and the illuminance in respect to the calibration setup.

Therefore, an e�ort was done in order to avoid a calibration process. A third algorithm
was suggested using previous works of Heiligenberg and Baldi. They established that an array
of Gaussian receptive �eld can provide a linear estimation of a stimulus position, thanks to a
weighted sum calculation. Here, this approximation is modi�ed to be robust to ambient lighting
and contrast variations. An application to a target pursuit was made with a mobile robot named
ACEbot. It was able to reproduce pursuit behavior similar to the hover�y. An interception
behavior was also showed.

Finally, an arti�cial compound eye with a coarse spatial resolution can be endowed with
hyperactuity and enable a robot to follow a target with precision. In this thesis, a step forward has
been made toward bio-inspired target localization and pursuit, allowing a better understanding
of the strategy used by winged insects.
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1.1 Technological Context

Today, the technology of the Unmanned Aerial Vehicle (UAV) and mobile robots is more and
more present in our lives. They were �rst deployed in military applications. These UAVs are
mostly long-range aerial robots with a wide wingspan that are remotely controlled from a distant
location. These systems become more and more autonomous (see �gure 1.1b).

Other UAVs have appeared for leisure activities in the recent years. Mostly quadrotors
were used by the hobbyist community. FPV (First Person View) racing appeared with the use of
virtual reality headsets and small cameras embedded onboard the �ying robots. All these di�erent
uses of �ying machine decreased the cost of robots and opened new markets with autonomous
systems that required less and less piloting skills. Companies like DJI have developed a know-
how in aerial shootings. These kinds of robots can also be involved in visual inspections or with
photogrammetry techniques in the generation of 3D digital models.
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a) b)

c)

d)

Figure 1.1: a) The Dyson 360eye autonomous vacuum cleaner (source from Dyson
o�cial website) b) An unmanned aircraft, the MQ-1B Predator from Gen-
eral Atomics (Picture from the U.S. Air Force, wikimedia commons) c) A
quadrotor with a pantilt camera, the DJI Phantom 3 advanced (Picture
from Jacek Halicki, wikimedia commons). d) Picture of the �ying robot
from the startup Skydio performing sportsman following and trees avoid-
ance (image: Skydio via YouTube https://youtu.be/OT0jO4Jip0g).

The guidance and navigation of the aerial robot is largely based on GPS measurements.
Indeed, it provides a global localization but does not take the environment into account. In GPS-
denied areas like indoors, it cannot be relied upon. Moreover, a solution to avoid obstacles is
necessary in closed environments. Therefore, cameras are embedded onboard and visual feedback
is used in autonomous �ying robots.

The robot vacuum cleaner is an example of mobile robots which have to deal with an unknown
environment. They are using either contact sensors or, more recently, an omnidirectional camera
to perform visual SLAM (Simultaneous Localization And Mapping) (see �gure 1.1a).

In �ying robotics, the "follow me" mode is becoming a standard on consumer robots such as
DJI Phantom 3 and Parrot Bebop 2. But the awareness of the surroundings is still challenging.
Skydio is a startup which looks at this keypoint and shows an example of sportsman following
with obstacle avoidance (see �gure 1.1). These solutions, with their onboard sensors and proces-
sors, are usually heavy and have a limited autonomy. The camera sensor with their low frame
rate are a limitation to aggressive maneuvers and the computation of the full frame image in
real-time requires powerful processors.

Technology can help to solve this problem by using a more powerful microprocessor and new
batteries. But another point of view could be to see how nature has solved through evolution
many of these current problems and be inspired by it. Trying to reproduce animal behaviors and
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1.2. BIOLOGICAL FINDINGS IN FLYING INSECTS SENSORIMOTOR SYSTEM

characteristics with robots is also an interesting approach as it could provide feedback to better
understands the world of living organisms.

1.2 Biological �ndings in �ying insects sensorimotor system

If the goal is to design small aerial vehicles capable of stabilizing themselves and navigating
through an unknown environment while avoiding obstacles, insects are a good example of tiny
creatures capable of such behaviors. It should be noted that they display more complex perfor-
mances, like target following before mating, or chasing prey as in the case of the dragon�y. Bees
are able to �nd food, come back to the hive and communicate the food site to the other members
of the community (thanks to "waggle dance" [von Frisch, 1967]). Taking inspiration from the
�ies and other living forms can provide other solutions to perform the same tasks.

1.2.1 Anatomy of the �ies

Compound Eyes

Antennas

Halteres

Ocelli
a) b)

c)

Figure 1.2: a) The house�y Musca domestica endowed with compound eyes, halteres,
antennas and ocelli not visible on the picture (source Wikimedia com-
mons) b) Long hover�y, Sphaerophoria scripta, displays its big compound
eyes and halteres (Picture: Charles J. Sharp, Wikimedia commons) c) Noc-
turnal bee Megalopta genalis with its three ocelli on the dorsal surface of
the head [Cronin et al., 2014])

Flying insects are endowed with a speci�c sensory system to enable a skilled �ight (see �gure
1.2 and [Taylor and Krapp, 2007] for a review). First, visual information is perceived thanks to
the compound eyes. The primary cue processes the optic �ow (see appendix A), which is the
apparent motion of features in the observer �eld of view. The compound eyes are also used to
detect the horizon. These output measurements are useful to stabilize the �ight. The ocelli are
placed on the dorsal surface of the head and they are usually three. Like the compound eyes, they
are sensitive to light but with a higher dynamic range and a wide �eld of view about 150◦ [Land
and Nilsson, 2012]. They appear to contribute to the dorsal light response, which is involved
in head stabilization [Hengstenberg, 1993]. Halters mediate �ight stabilization in Dipterans and
Strepsipterans : their oscillations make them sensitive to the Coriolis force thus providing body's
mechanical angular speed sensitivity to these insects. They have evolved from old hind wings
to ful�ll the inertial sensing functionality. They are oscillating in opposite phase of the wing
oscillation and the Coriolis force applied on the knob at the end of each halter is sensed. The
antennae, as the cils in the head of the �y, seem to be sensitive to the air�ow acceleration and
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speed. This air speed sensitivity helps to control their air speed, in a similar way the Pitot tubes
can do on planes.

1.2.2 The compound eyes of insects

The insect's compound eyes are an example of evolution of vision (see [Nilsson, 2009] for a
philogenetic tree). They are the most common eye type in the animal kingdom [Cronin et al.,
2014]. The part of the �y's brain dedicated to visual information processing is about two-thirds
of the 360000 neurons (for the Musca and Calliphora) [Strausfeld, 1976], which indicates the
importance given to visual inputs.

The architecture of the compound eyes is presented in �gure 1.3. A compound eye is composed
of multiple ommatidia, knowing that an ommatidium is composed of a hexagonal lens (this is
the most common shape observed but it can vary along with the position on the head), a
crystalline cone and a rhabdom. The rhabdom is separated into several rhabdomeres (usually
7 or 8) surrounded by pigment cells (see �gure 1.3b). By migrating toward the center of the
rhabdom, the pigment cells are absorbing more or less light, which create a �rst light adaptation
mechanism [Kirschfeld and Franceschini, 1969].

Two main optical parameters are used to characterize these photoreceptors: the interom-
matidial angle ∆ϕ, which is the angle between 2 photoreceptors' directions and the acceptance
angle ∆ρ, de�ned as the angle at half width of the Gaussian-shaped Angular Sensitivity Func-
tion (ASF). This particular shape of ASF results from the combination of the airy di�raction
pattern and the geometrical angular width of the rhabdom at the nodal point of the lens [Snyder,
1979,Land and Nilsson, 2012]. It realizes a �rst spatial �lter of the visual scene.

The spatial resolution of compound eyes is relatively coarse compared to the human eye
(with an interreceptor angle of 0.009◦ in the fovea [Cronin et al., 2014]) and various between the
di�erent species. The interommatidial angle can be as small as 0.24◦ for the dragon�y (Anax
junius), up to 7◦ for the Coleoptera (i.e. Phyllobius urticae) [Land, 1997]. It means that this
feature is perhaps not the most important for visually-guided �ight.

The compound eyes usually present an anisotropic spatial resolution. It usually reveals that
the insect's eyes contain an acute zone similar to the human eye fovea. The di�erence between
male and female demonstrates an evolution toward speci�cation. Indeed, the male, which has
the duty to pursue the female for mating, usually has a distinctive area in the center of its head
called "love spot" which has a higher resolution. It is possible that the left and right part can
touch, while staying separated in their female counterpart [Perry and Desplan, 2016].

There are two types of compound eyes (see �gure 1.3). The appositition eyes and the super-
position eyes. In the �rst, the light that enters through a lens is guided to a unique rhabdom.
In the superposition eyes, the ommatidium are not separated with pigment cells, allowing the
presence of a clear zone between the crystalline cones and the rhabdoms. It enables light from
di�erent lenses but with the same angular direction to target one rhabdom. The apposition eyes
is mostly present in diurnal insects, as the superposition eyes are for the nocturnal ones [Cronin
et al., 2014].
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Figure 1.3: a) Schematic view of a compound eye, showing the two main optical pa-
rameters of interest: the interommatidial angle ∆ϕ, de�ned as the angle
between optical axes of two adjacent ommatidia, and the acceptance an-
gle ∆ρ (adapted from [Horridge, 1977]). b) Schematic transverse section
through the open rhabdom of a �y, showing the seven distal retinular cells
(hatched in black) with their separated rhabdomeres. c-d) The two broad
subtypes of compound eyes. c) Apposition eyes (in this case a focal appo-
sition eye). d) Superposition eyes (in this case a refracting superposition
eye). cz = clear zone. (sub�gures b-d are reprinted [Cronin et al., 2014])
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Figure 1.4: Schematic horizontal section through the compound eyes, the optic lobes
and the protocerebrum of the �y. Each optic lobe contains the visual
neuropils Lamina (L), Medulla (M), Lobula (LO), and Lobula plate (LP),
which are connected by the external and internal chiasma (CHE, CHI). The
retina (R) and the visual neuropils are organized in columns, the orienta-
tion of which are indicated by thin lines. Visual information is conveyed in
strict retinotopic order from the retina onto the successive visual neuropils
(see arrows in the right eye and optic lobe). The horizontal system (HS)
consists of three giant tangential cells residing at the anterior surface of the
lobula plate and projecting into the posterior ventrolateral protocerebrum
near the cervical connective (CC). (Reprinted from [Hausen, 1982])

1.2.3 Neural pathways

The ommatidia of the �y are connected to 4 neuropiles: the lamina, the medulla, the lobula
and the lobula plate (lobulas can be referenced as lobulla complex). The six light-sensitive
photoreceptors, R1-R6, are directly connected to the lamina, when the two other photoreceptor
neurons, R7 and R8, pass through the lamina to end in speci�c layers of the medulla [Shaw,
1981].

First, the lamina is in charge of a �rst high pass temporal �ltering. It is where the information
about the background illuminance is removed [Tuthill et al., 2013].

The medulla is considered to be the place where the �rst steps of the motion processing are
made. Due to the small size of its neurons, it is di�cult to perform physiological recordings
[Douglass and Strausfeld, 1996].

The lobula perfoms local motion detection and the lobula plate the integration of all the
directonal motion information. The Lobula Plate Tangential Cells (LPTCs) are in charge of this
processing and provide a wide-�eld motion estimation (see [Taylor and Krapp, 2007]. It was
observed that the LPTCs are directionally selective (front to back, back to front, left to right
and right to left) [Hausen, 1982] and that parallel pathways for ON and OFF motion detection
exist [Franceschini et al., 1989,Maisak et al., 2013].

1.2.4 Retinal movements

A - In the �y compound eyes

Observations showed the presence of small muscles in the �ies' head which enables small move-
ments of the rhabdomeres [Hengstenberg, 1972]. Figure 1.5 shows the position of 2 muscles
MOT and MOS able to translate the retina and therefore modify the direction of vision of the
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ommatidia. By measuring the activity of the MOT muscle, movements of 5 − 6Hz has been
recorded during �ight [Franceschini and Chagneux, 1997] with an amplitude close to ∆ϕ (see
�gure 1.6).

Figure 1.5: a) Anatomical reconstruction of the eye muscle and its motoneurone of
a Musca domestica (adapted from [Hengstenberg, 1972]). b) Frontal and
sagital sections of the same �y. It shows the muscles MOS and MOT which
enables a translation of the retina (from [Kerhuel, 2009], initially published
in [Franceschini et al., 1991])
Keys: MOT, muscle orbito-tentorialis, MOS: muscle orbito-scapalis, NV:
motor nerve to MOT, TT: Tentorium, RET: ommatidia, LAM: Lamina,
ANT: antenna base, OE: esophagus

a) b) c)

Figure 1.6: a) Flying house�y on the leash. The insect was �ying freely at the tip
of a double enameled copper wire (20-µm diameter, 0.4-m length) serving
as a di�erential electrode (picture taken from a video �lm). (ba) In-�ight
recording of the spikes generated by the MOT eye muscle. (bb) Unit
pulses triggered by the individual spikes showing the periodic dropouts.
(bc) Instantaneous spike frequency plot showing that about �ve times per
second, the high frequency (approximately 110Hz) of the MOT sponta-
neously dropped by about half. (bd) and (c) The periodic dip in the �ring
rate caused periodic displacements dx of the photoreceptors in the focal
plane of each facet lenslet, resulting in periodic angular displacements dϕ
of the visual axes. (Reprinted from [Franceschini, 2014])

Their function has not yet been completely understood. A plausible explanation of these
micro-movements could be to endow the eye with hyperacuity, as has been shown with robotic
applications (see [Viollet et al., 2014] for a review).
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B - Observation in the jumping spiders

The visual system of the jumping spiders is very di�erent from what has been described up until
here (see �gure 1.7). It is composed of secondary eyes which are �xed to the carapace and are in
charge of detecting the motion of a potential prey or threat. Then, the spider turns toward the
target to enable the primary eyes to locate and identify it. These primary eyes have a narrow
retina shaped like boomerangs [Land and Nilsson, 2012]. It has been observed that this retina is
able to move horizontally and vertically by as much as 50◦, and also rotate about the optic axis
(torsion)(see Land 1985). When presented with a novel target, the eyes scan it in a stereotyped
way moving slowly from side-to-side at speeds between 3 and 10◦.s−1, and rotating through ±25◦

as they do so [Land, 1969].

a) b)

c)

Horizontal movement
Torsional
movement

10°
horizontal

50°
torsion

Stimulus
position

Stimulus
10s

Figure 1.7: a) Picture of a jumping spider (source �ickr coniferconifer) b) A diagram
and record of the movements of the boomerang-shaped retinae of the two
principal eyes while scanning a novel target. These movements are con-
jugate, and consist of a stereotyped pattern of horizontal oscillations and
slower torsional rotations. This scanning pattern apparently allows the
narrow retinae to determine the angular pattern of edges in the target,
and thus enables the spider to distinguish other jumping spiders from po-
tential prey (modi�ed from [Land, 1969]

C - Ocular movements of the human eye

The human eye is in the camera eye category, where the retina is at the back of an ocular globe
and the light enters through a unique lens. The information is transmitted to the brain through
the optical nerve. The ocular movements can be classi�ed as follows. There are the smooth
pursuit movements to track a slow target, in order to keep it in the highest spatial resolution
area of the retina, the fovea. The saccades are quick movements to change the attention area
from one to another. Some micro-movements also occur when the eye is steady (see [Rolfs, 2009]
for a review). Three types of Fixational eye movements can be observed:

� the drift

� the tremor

� the microsaccades
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Figure 1.8: Trajectory of the two eyes during 1s of �xation on a black spot on a neutral
background (highlighted by red dotted circle). Slow drift movements are
displayed in dark color while rapid jerk-like microsaccades are highlighted
in orange. (from [Rolfs, 2009])

Figure 1.8 shows drifts, which are smooth erratic movements at low velocity in black, and
microsaccades,which are rapid shifts of the eye, in orange. The microsaccades have the particu-
larity of being correlated on both eyes. The tremor (or physiological nystagmus) is a wave-like
motion superimposed to the drift movements. Studies reports movement cycles of 0.1-0.5 min-arc
in amplitude with frequencies ranging from 30 to 103Hz.

1.2.5 Head-body re�ex in roll in �ying insects

The halteres mentioned previously (see section 1.2.1) is a sensor which plays an important role in
the �ight controller of the �ies. It provides measurements of fast rotations, those that vision can
not cope with [Hengstenberg, 1988]. It is involved in the head stabilization. This stabilization
is very interesting when it comes to visual processing as it cancels rotational movements. The
vision is therefore only submitted to translation movements. It is very helpful in the case of
�ight regulation thanks to optic �ow. Indeed, the translational optic �ow is directly linked to
the speed and distance of the features seen, whereas the rotational optic �ow is only dependent
on the individual rotational motion. Head-roll compensation has also been reported on the
wasps with a uniform visual environment, suggesting the use of rotational measurements used
as input [Viollet and Zeil, 2013].

It is similar to the vestibular system in humans which the rotation of the head and provide
feedback to eye in order to stabilize the vision. This mechanism is known as the Vestibulo Ocular
Re�ex (VOR). The VOR is very interesting when it comes to target tracking. It creates an inner
loop controller which helps in �xation tasks by rejecting perturbations.
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1.3 Bio-inspired visual sensors and their application on robotic

platforms

As it has been seen, the compound eyes show interesting features, such as compactness and
optical properties. However, it is very hard to mimic with technological processes. Only 2 recent
examples of arti�cial compound eyes have been built. The �rst one is a hemispherical array of
180 lens and diodes and is capable of recording images [Song et al., 2013]. The second one is a
cylindrical compound eye with a VLSI circuit capable of light adaptation [Floreano et al., 2013],
especially designed for optic �ow measurements. As most of the experiments performed in this
thesis were with this sensor, it will be further detailed in section 1.3.4. But some others examples
inspired by the �y eyes were designed to measure optic �ow or perform target tracking.

1.3.1 Works on Optic �ow developed in the laboratory

a)

b)

c)

d)
e)

Figure 1.9: a) The "Robot mouche" was the �rst bio-inspired robot and was able
to perform obstacle avoidance thanks to Elementary Motion Detectors.
(Reprinted from [Franceschini et al., 1992]) b) The hovercraft named
LORA was able to reproduce bees' trajectories navigating in a corridor
thanks to 2 optic �ow measurements [Roubieu et al., 2014] c) OCTAVE
was the �rst robot to perform ventral optic �ow regulation, in order to
assess altitude and speed. (Copyright H. Raguet) d) Local Motion Sensor
(LMS) with lens, photodiodes and a microcontroller to compute the optic
�ow using two di�erent pathways for ON and OFF contrasts. (Adapted
from [Roubieu et al., 2012]) e) BeeRotor was a tethered robot endowed with
a decoupled eye and able to navigate into a tunnel. It stabilizes its �ight
with 4 LMS and reorients its eyes to look perpendicularly to the ground
and is therefore able to avoid steep relief [Expert and Ru�er, 2015].

The �rst example of a bio-inspired motion detector was directly embedded on a robot. The
"Robot-Mouche" (literally robot-�y, see �gure 1.9a) was endowed with 114 Elementary Motion
Detectors (EMD) spread horizontally around the robot. Each are implemented on parallel analog
electronic circuits, which matches the �y's neural parallel processing and avoids any quantization
and sampling of digital devices. It was the �rst implementation of EMD based on the "time-of-
travel' scheme, which is a process that measures the time delay between 2 �ltered photodiode
signals crossing a threshold [Blanes, 1986]. The "Robot-Mouche" was able to navigate to a goal
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and avoid obstacles along the way. The strategy was to move straight at 50cm.s−1 until an
obstacle is detected, then stop to perform rotation toward the closest gap and repeat until the
goal is reached [Franceschini et al., 1992].

Then, optic �ow algorithms were implemented on microcontrollers to reduce the size. First,
it was only composed of two photodiodes behind a lens with a �rst analog �ltering step before the
computation of time delay on the microcontroller [Ru�er et al., 2003]. Then, improvements were
made by involving more photodiodes in the processing to increase the robustness [Roubieu et al.,
2012]. Figure 1.9d shows the Local Motion Sensor algorithm which was duplicated 5 times and
fused through a median �lter. Later, an adaptation allowed for reduction of the computational
load [Expert et al., 2012]. A novel retina endowed with auto-adaptive pixels that obey the
Michaelis-Menten law, called M2APix was developed to perform optic �ow measurements. It
provides a light adaptation through 7-decade range while assessing transient changes accurately
[Mafrica et al., 2015].

These optic �ow sensors have demonstrated good performance and were applied on robots
to test bio-inspired autopilots (see �gure 1.9). Indeed, it has been established that knowledge
of neither airspeed nor ground speed, nor altitude is needed to perform terrain following. Only
the ventral optic �ow measurements could provide su�cient information to perform an altitude
control [Ru�er and Franceschini, 2005].

Behavioral studies of bee navigation through a corridor [Srinivasan et al., 1991, Srinivasan
et al., 1996,Serres et al., 2008] highlight the fact that an optic �ow regulation could explain the
bee trajectories. An autopilot called LORA (stands for Lateral Optic �ow Regulation Autopilot)
was proposed using 2 optic �ow sensors oriented towards left and right. The strategy is to assess
the maximum optic �ow between left and right to a setpoint which regulates the distance to the
nearest wall. The speed is however controlled with the sum of the left and right optic �ows.
LORA was tested onboard a hovercraft robotic platform and reproduced most of the insect �ight
behaviors [Roubieu et al., 2014] (see �gure 1.10 for details).

A similar behavior was observed on the vertical axis, using the dorsal and ventral otpic
�ow as an input of the controller which regulates the altitude [Portelli et al., 2010]. Robotic
experiments were able to reproduce such a behavior and perform steep relief avoidance using a
rotated eye [Expert and Ru�er, 2015].

BioCarBot was a car-like robot which was able to assess its trajectory thanks to an optic
�ow feedback loop and perform odometry. The optic �ow was computed thanks to a cross-
correlation based algorithm with the M2APix retina which enables constant performances over
a wide illuminance range [Mafrica et al., 2016].

1.3.2 Optic �ow in robotic applications

Other ways of implementing optic �ow measurements have also been explored. The �rst bio-
inspired algorithm proposed was the local 1-D Hassenstein-Reichardt correlator [Hassenstein and
Reichardt, 1956], but very few robotic implementations were made, because of its limited range
and lack of a scaled output.

Optic �ow measurements are also used in computer vision to perform motion analysis and
compute transformation between two images. As camera is used as input, they are adapted
to work on pixels' array. The popular algorithms are the Interpolation Image Algorithm (I2A)
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Figure 1.10: Summary of the similarities of the bee behaviors observed in the last 25
years ethological studies (A)-(G) and the fully actuated robot behaviors
equipped with the bee-inspired LORA autopilot tested in similar situa-
tions (H)-(N). These results show the dual OF regulator combined with
a heading-lock system can be viewed as a working hypothesis to explain
how the honeybee Apis Mellifera controls both its speed and position on
the horizontal plane of a constraint corridor. Blue arrows represent the
main direction of the agent moving in a corridor where the entrance is
represented by a cross. Red and green arrows represent the direction of
motion of the moving wall in case of a non-stationary corridor. The last
comparison (G) versus (N) shows how constant speed behaviour despite
head wind may be explained by the presented model.
The references above each sub�gure are [Srinivasan et al., 1991] for A,
D and F, [Srinivasan et al., 1996] for B, [Serres et al., 2008] for C and
E, [Barron and Srinivasan, 2006] for G. For H to N, it is the �gure number
of the reference [Roubieu et al., 2014], where this �gure is coming from.
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b) d)

c)

f)

e)

g)

Figure 1.11: a-b) Quadrotor equipped with 8 Optic �ow sensors capable of hovering
in 3D dimension with low drift (adapted from [Briod et al., 2016]). c)
30-g aircraft with its electronics was able to perform obstacle avoidance
(Reprinted from [Zu�erey and Floreano, 2006]) d) Quadrotor based on
the Hummingbird platform from Ascending Techologies endowed with
a panoramic camera on top and optic �ow sensor with a sonar on the
bottom (Reprinted from [Conroy et al., 2009]). e) The PX4FLOW optical
�ow sensor estimating the optic �ow using block matching with mounted
lens on the left and ultra sonic distance sensor on the right. The distance
sensor can be used to scale the measured optic �ow which is derotated
based on the embedded rate gyro (Reprinted from [Honegger et al., 2013]).
f-g) Quadrotor with a camera pointing downward performs hovering and
landing above a moving platform thanks to Optic Flow (adapted from
[Herissé et al., 2012]).

[Srinivasan, 1994], the Horn-Schunk [Horn and Schunck, 1981] and the Lucas Kanade [Lucas
et al., 1981], but its pyramidal implementation [Bouguet, 2001] is the most widespread in robotic
application due to its accuracy and e�ciency in regard to the computational load. An improved
version with speci�c feature detection named LKT was proposed [Tomasi and Kanade, 1992].

Several studies use the optic �ow cues to perform di�erent tasks with more or less bio-inspired
principles. Navigation through a corridor was early a very interesting task to test optic �ow based
controller. First, a mobile robot computed optic �ow using a gradient-based intensity algorithm
to reproduced the centering-re�ex [Santos-Victor and Sandini, 1997], suggested by [Srinivasan
et al., 1996]. Others performed the same task. Conroy et al. used a Wide-Field integration
algorithm, previously presented for a hovering task [Humbert et al., 2007], to provide an usable
output for navigation from local optic �ow measurements [Conroy et al., 2009]. Zingg et al. used
a LKT algorithm computed at 20Hz [Zingg et al., 2010].

The �rst �ying robot to perform obstacle avoidance thanks to optic �ow was using the I2A
algorithm onboard a lightweight �xed-wing robot [Zu�erey and Floreano, 2006]. Autopilots were
designed for hovering using optic �ow measurements thanks to mouse sensors pointing toward the
ground only [Lim et al., 2012] or toward every directions [Briod et al., 2016]. Stabilization thanks
to optic �ow on di�erent surfaces often uses a camera and a Lucas-Kanade Pyramidal (LKP)
computation [Bristeau et al., 2011,Herissé et al., 2012]. With a speci�c optic �ow sensor and a
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non-linear observer, it has also been shown that it is possible to stabilize a quadrotor [Conroy
and Humbert, 2013].

The integration of the optic �ow calculation is also used for odometry task in combination
with sonar measurements. Carillo et al. used this strategy in a line following application when
none is detected in the FOV [Carrillo et al., 2012]. Speci�c sensors were also developed as the
Pix4�ow sensor to provide the traveled distance of a MAV (Micro Aerial Vehicle) [Honegger
et al., 2013]. Mobile robot endowed with mouse sensor can also be able to perform odometry at
very low cost [Ross et al., 2012].

1.3.3 Target positioning sensors

The low spatial resolution of the compound eyes should be not well suited for target localization.
Therefore, fewer examples of sensors were designed for this task. Two major types of bio-inspired
sensors were developed, both taking advantage of the ASF of the �y eyes.

a) b)

c) d) e)

Figure 1.12: a) Di�erent sensors based on the compound eyes. One with only one
arti�cial ommatidia whereas the 2 others are an hexagonal array of 7 ar-
ti�cial ommatidia (reprinted from [Luke et al., 2012]. b) OSCAR robot
with its scanning eye decoupled from the body with one rotational de-
gree of freedom. The scanning photoreceptors are actuated thanks to
a piezo actuators with an amplitude of 0.1◦ (Reprinted from [Kerhuel
et al., 2010]) c) CAD view of the complete oculomotor system oriented
toward the ground. The orientation of the 2-axis gimbal eye is controlled
through two fast tiny servomotors. d) CAD view of the eye: the stepper
motor combined with the eccentric mechanism yield a periodic (55Hz)
rotation of small amplitude (around 3.5◦) making the lens of each eye
translate periodically above the four linear arrays composed of 6 pixels
(LSC sensor). e) Picture of the complete oculomotor system. (c-e) are
reprinted from [Manecy et al., 2016])

A solution is to only recontruct the position of the feature placed in between by measuring
the signal amplitude at the output of the arti�cial ommatidia. This solution has to be endowed
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with an external photodiode to cancel the ambient lighting information [Benson et al., 2009,Luke
et al., 2012,Frost et al., 2016] (see �gure 1.12a).

Another solution, developed in the lab, is based on the retinal movements observed in the
�y compound eyes. The �rst sensor to displays such property was named OSCAR (Optical
Scanning sensor for the Control of Aerial Robots) [Viollet and Franceschini, 2010]. It consists of
2 photodiodes placed behind a lens and submitted to a known scanning pattern thanks to a piezo
actuator. It is able to locate an edge accurately by computing the time delay between the two
photodiodes signals, properly �ltered. Onboard a tethered robot, it demonstrates its performance
in target tracking by localizing it with a resolution 70-fold better than its static resolution.
Then, the VODKA algorithm, reproduced the performance with a similar device. However, the
scanning law was sinusoidal and no knowledge of the scanning phase is needed [Kerhuel et al.,
2012]. Then, OSCAR II (see �gure 1.12b), with this new algorithm and a decoupled-eye, showed
the ability to track an edge and a bar, even with strong perturbations, with a very small FOV
(≈ 4◦) [Kerhuel et al., 2010]. HyperQuad was a quadrotor with a decoupled eye based on similar
visual principles. It was able to locate a cross and to stabilize its �ight without accelerometer
measurements thanks to its eye �xation re�ex. The performance was also achieved with a moving
cross. The HyperQuad's eye was composed of 4 arrays of 6 pixels placed orthogonally and it is
the lenses which are submitted to a quasi-translational movement [Manecy et al., 2016] (see �gure
(see �gure 1.12 for details). For target tracking, a bio-inspired approach is based on Elementary
Small Target Motion Detectors (ESTMDs) using spatially �ltered camera images [Bagheri et al.,
2015] mimicking the dragon�y [Wiederman and O'Carroll, 2011].

In the robotic community, the standard cameras are mostly preferred. Some alternatives with
Infrared Led beacons appear with a reduced cost and limited payload for advantages [Wenzel
et al., 2010,Raharijaona et al., 2015].

1.3.4 CurvACE: A miniature Curved Arti�cial Compound Eye

A - Overview

The CurvACE project was an European project that had the purpose of developing an arti�cial
compound eye with microlens arrays and adaptive photoreceptors made of VLSI [Pericet-Camara
et al., 2011]. The resulting sensor is shown in �gure 1.13 and is more similar to the trilobite
eye with its cylindrical shape than the sphere of the �y eye. It is composed of 42 columns of 15
photosensors, enabling, after bending on a cylindrical sca�old, a �eld of view of 180× 60◦.

It reproduces some characteristics of one drosophila compound eye (see the table 1.1 from
[Floreano et al., 2013]). Indeed the interommatidial angle ∆ϕ and the acceptance angle ∆ρ are
similar to the ones of the drosophila eye with 4.2◦ on average in both. The CurvACE sensor also
includes an adaptation to illuminance.

B - Sensor Architecture

Optical characteristics To provide a wide �eld of view in both directions, two di�erent
methods were used. The bending of a �exible PCB provides the horizontal distribution of
the columns, whereas a clever shift of the lens relative to the photodiode enables the vertical
distribution of the direction of vision (see �gures 1.13 and 1.14).
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Figure 1.13: Arti�cial and natural curved compound eyes. (A) Image of the CurvACE
prototype. The entire device occupies a volume of 2.2cm3, weighs
1.75g and consumes 0.9W at maximum power. (B) Illustration of the
panoramic FOV of the fabricated prototype. The dots and circles rep-
resent the angular orientation and acceptance angle ∆ρ of every omma-
tidium, respectively. Compound eye of the extinct trilobite Erbenochile
erbeni [Fortey and Chatterton, 2003] (C) and of the fruit �y Drosophila
melanogaster (D). (from [Floreano et al., 2013])

Figure 1.14: Cross section through an ommatidial column and ray tracing (Zemax;
Radient Zemax, LLC) in the optics layer. The blue rays show the path
of the light focused by each microlens on its photoreceptor (red) via two
apertures (Reprinted from [Floreano et al., 2013])
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Table 1.1: Speci�cations of CurvACE prototype compared with the charactersitics of
the Drosophila Melanogaster compound eye (from [Floreano et al., 2013])

Characteristics CurvACE Drosophila eye

Number of ommatidia 630 600-700
Facet diameter [µm] 172 16

[Franceschini and Kirschfeld, 1971]
Eye diameter [mm] 12.8 0.36

[Franceschini and Kirschfeld, 1971]
Facet diameter/Eye diameter [%] 1.3 4.4
Interommatidial angle ∆ϕ [◦] ∼ 4.2 ∼ 4.7− 5.5

[Franceschini and Kirschfeld, 1971]
Acceptance angle ∆ρ [◦] 4.2 ∼ 4.5

[Götz, 1965]
FOV [◦] 180× 60 160× 180

[Heisenberg and Wolf, 1984]
Signal acquisition bandwidth [Hz] 300 < 100

[Laughlin and Weckström, 1993]
Adaptability to illuminance Yes Yes

[Gu et al., 2005]
Crosstalk prevention Yes Yes

[Götz, 1965]

An aperture pattern is realized between the polymer lenses and the CMOS chip to prevent
cross talks between the photonic �ows coming from di�erent lenses. This layout is to compared
with the apposition compound eyes previously presented (in section1.2.2). Moreover, this aper-
ture pattern is used to create an Angular Sensitivity Function (ASF) close to a Gaussian as it
can be found in the �y compound eyes. It uses the di�raction property of light that goes through
a hole.

Description of the VLSI circuit The CurvACE sensor is composed of 630 cells, each one
developed around an octogonal photodiode. One cell is composed of a Delbrück cell responsible
for the light adaptation; a low-pass �lter, to ensure the same cutting frequency for the Analog-
to-Digital Converter (ADC); and a follower circuit.

The Delbrück adaptive photodetector consists of a logarithmic circuit associated with a high
gain negative feedback loop, as shown in Figure 1.15. It is based on a MOSFET feedback (MFB)
transistor operating in the sub-threshold region where the current-to-voltage characteristic shows
logarithmic variations in a large dynamic range of up to several decades. The adaptive element
responsible for the DC output levels acts like a very high resistance and makes the output signal
Vout follow the gate voltage of the MFB transistor. The non-linear resistance of the adaptive
element decreases in the case of fast transient signals. The adaptation to variations in the ambient
light levels is therefore relatively slow, whereas the compensations for changes in contrast are
much faster.

The low-pass �lter next in line limits the cut-o� frequency of the photodetector to a value
(300Hz) that is compatible with the sampling rate of the 10-bit ADC used to digitize each
photodetector's output signal.
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Figure 1.15: One of the 15 photodetector cells of one CurvACE column. The original
circuit developed by Delbrück and Mead [Delbruck and Mead, 1994] was
enhanced here by cascading a �rst-order low-pass �lter to prevent tem-
poral aliasing. (Adapted from [Floreano et al., 2013] and [Viollet et al.,
2014])

At last, as shown in Figure 1.15, a follower stage based on an operational ampli�er was
introduced between the anti-aliasing �lter and the ADC to reduce the input time constant and,
thus, to improve the accuracy required by the sampling rate of 2ksamples/s.

There is one ADC per column and one readout circuit to enable a custom digital communi-
cation to a microcontroller (µC). In this architecture, there are 2 µC responsible of the readout
of columns 1 to 22 and 21 to 42 respectively. This means that column 21 and 22 can be read by
both.

C - Photodetector response

Characterization of the Auto-Adaptive Photodetectors The auto-adaptive photodetec-
tors were designed in order to reduce the sensitivity to ambient lighting variations and increase
the sensitivity to the contrasts change. Figure 1.16 shows the dynamic gain adjustment of one
CurvACE element (photodetector equipped with optics) facing a set of still or moving black and
white stripes placed 195mm away. It is obvious that the Delbrück pixel compensates the change
in the illuminance induced by opening a sun-blind and modulates its response according to the
contrasts of the bars in its FOV.

Characterization of the sensor response relative to lighting variation To add more
information about the light adaption, a characterization of the photodetector's response to a
variation of the ambient light intensity was made. A light source is pointing to the pixel as
depicted in �gure 1.17a and its intensity is modulated. The Steady state point is noted in red
and the peak transient response is marked in green on an axis showing the Voltage photodetector
output versus the irradiance in W.cm−2. Figure 1.17b shows the resulting Sshapes. It highlights
that the pixel response has the same slope whatever the steady state point at the beginning.
Moreover, the Steady state response varies slightly over 4 decades.
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Figure 1.16: Response of one CurvACE element (a photodetector with optics) to sharp
changes in the illuminance (obtained by opening a sun-blind) after digi-
tizing and sampling the data at a frequency of 500Hz. The photodetector
output signal was recorded while facing a periodic pattern (a set of stripes
with a width of 50mm placed 195mm from the sensor) exposed to nat-
ural lighting conditions) (a) stationary (static state) and translating at
a speed of (b) 29◦/s and (c) 172◦/s. The photodetector compensated
quickly (about 0.5s) for the increase in the illuminance and adapted its
gain, as well as ampli�ed the transient signals generated by the moving
pattern. The inset (upper right corner) shows the periodic pattern ac-
quired by the CurvACE sensor at a distance of 15cm with a region of
interest composed of 20 by 15 ommatidia under a lighting of 1500Lux.
(Reprinted from [Viollet et al., 2014])
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Figure 1.17: a) CurvACE photodetector response to a step variation of illuminance.
V0 and Vf are the steady-state response at the starting illuminance and
the end illuminance respectively and are marked with red dots. Vp is
the peak response after the step perturbation mark with a green dot.
b)CurvACE autoadaptation to ambient light at the single ommatidium
level. Steady-state (red dots) and transient (green dots) responses of the
adaptive analog VLSI photodetectors [design based on a circuit proposed
by Delbrück and Mead [Delbruck and Mead, 1994]]. Each of the four dy-
namic operating curves (in green) shows the V(log I) response, averaged
Vp value over 11 ommatidia (photodetectors with optics) of one column,
to step increments and decrements of irradiance about four steady levels
V0 (red circles). (Reprinted from [Floreano et al., 2013])

1.3.5 Neuromorphic vision

The neuromorphic cameras are event-based visual sensors that mimic the neural network behavior
of the brain to process the information. It means that there is no image anymore, each pixel
handles its own information individually. The concept is to mimic the behavior of the human
eye retina which has multiple layers, responsible for capturing light, realizing a �rst a spatial and
temporal �ltering before transmitting the information to the brain [Gollisch, 2009].

The �rst sensor based on this technology to be sold was the "Dynamic Vision Sensor" (DVS)
[Lichtsteiner et al., 2006,Lichtsteiner et al., 2008]. It responds to the variation of light intensity
of each pixel individually and with a temporal resolution close to the microsecond. Indeed, it
is not frame based, meaning that it transmits information completely asynchronously when a
change occurs. The main change compared to cameras is that the transmission is "event-based"
as it is not a clock that controlled the acquisition. This sensor is well-suited for high speed
application, but no real image can be provided by this visual sensor (see �gure 1.18 for details).

Another sensor named ATIS, which stands for "Asynchronous, Time-based Image Sensor",
was designed to overcome this limit [Posch et al., 2008, Posch et al., 2011]. A change detector
triggers a new exposure measurement after a brightness change. The exposure measurement is
the duration of the photocurrent integration until it reaches a certain value. The output can
therefore provide grayscale imaging as well as change event ON and OFF.

This kind of sensor opens new approaches in computer vision with completely asynchronous
systems. Some works has already been done to calculate optic �ow with spiking neural networks
to have a complete asynchronous computation process [Orchard et al., 2013]. Others have also
developed pattern recognition in order to perform feature tracking [Lagorce et al., 2015]. An

20



1.3. BIO-INSPIRED VISUAL SENSORS AND THEIR APPLICATION ON ROBOTIC
PLATFORMS

Event-based camera have also been used on a mobile robot to track a moving target [Liu et al.,
2016].

Figure 1.18: a) Simpli�ed three-layer retina model and b) corresponding DVS pixel
circuitry; in c) typical signal waveforms of the pixel circuit are shown.
The upper trace represents an arbitrary voltage waveform at the node
Vp tracking the photocurrent through the photoreceptor. The bipolar
cell circuit responds with spike events of di�erent polarity to positive and
negative gradients of the photocurrent, while being monitored by the
ganglion cell circuit that also transports the spikes to the next processing
stage; the rate of change is encoded in inter-event intervals; d) shows
the response of a QVGA array of DVS pixels to a natural scene (person
moving in the �eld-of-view of the sensor). Events have been collected for
some tens of milliseconds and are displayed as an image with ON (going
brighter) and OFF (going darker) events drawn as white and black dots.
(from [Posch, 2012])
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2.1 Summary

[Kerhuel et al., 2012] established that it is possible to localize an edge and a bar with a pair
of scanning photosensors. [Juston et al., 2014] designed an edge/bar detector in order to have a
similar slope for both patterns. Based on these previous works, a fusion algorithm using multiple
pairs was developed. This chapter presents it and an application to visual stabilization of a
tethered robot over a textured pattern is made. It endowed a robot with short range odometry
and enabled it to return to its hovering position after perturbations. Some limits are observed,
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mainly because of the non-linearity of the local measurement according to the visual scene.
Although this limits is overcome by selecting the best contrasts seen over the whole �eld of view.
It highlights the fact a high number of pairs is required at the input of the fusion algorithm to
provide accurate output.

2.2 Article 1: A small-scale hyperacute compound eye featuring

active eye tremor: application to visual stabilization, target

tracking and short range odometry

Description and Contribution

The following paper was accepted the 9th of January 2015 and published the 25th of February
2015 in the journal Bioinspiration and Biomimetics [Colonnier et al., 2015a]. R. Juston realized
the demodulation and the fusion algorithm programming. My contribution to this paper is the
modi�cation of the FOV of the sensor to �t to endow the robot with a visual odometry ability. I
calibrated the sensor to convert the angular measurement described in [Colonnier et al., 2015b]
into speed and position measurements. A. Manecy did the rotor and attitude control, as well
as the attitude estimation. A. Manecy and I designed the position controller and realized most
of the experiments together. S. Viollet worked on the design of the robot and on the gaze
stabilization re�ex. I wrote the paper with the help of S. Viollet and A. Manecy for the section
2.2.5.

2.2.1 abstract

In this study, a miniature arti�cial compound eye (15mm in diameter) named CurvACE (Curved
Arti�cial Compound Eye) was endowed for the �rst time with hyperacuity, using similar micro-
movements to those occurring in the �y's compound eye. A periodic micro-scanning movement
of only a few degrees enables the vibrating compound eye to locate contrasting objects with a
40-fold greater resolution than that imposed by the interommatidial angle. In this study, we
developed a new algorithm merging the output of 35 local processing units consisting of adjacent
pairs of arti�cial ommatidia. The local measurements performed by each pair are processed in
parallel with very few computational resources, which makes it possible to reach a high refresh
rate of 500Hz. An aerial robotic platform with two degrees of freedom equipped with the active
CurvACE placed over naturally textured panels was able to assess its linear position accurately
with respect to the environment thanks to its e�cient gaze stabilization system. The algorithm
was found to perform robustly at di�erent light conditions as well as distance variations relative
to the ground and featured small closed-loop positioning errors of the robot in the range of 45mm.
In addition, three �tasks of interest�were performed without having to change the algorithm:
short range odometry, visual stabilization and tracking contrasting objects (hands) moving over
a textured background.

2.2.2 Introduction

According to the de�nition originally proposed by G. Westheimer in 1975 [Westheimer, 1975]
and recently reformulated in 2009 [Westheimer, 2009]: "Hyperacuity refers to sensory capabil-
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ities in which the visual sensor transcends the grain imposed by its anatomical structure". In
the case of vision, it means that an eye is able to locate visual objects with a greater accuracy
than the angular di�erence between two neighboring photoreceptors ∆ϕ. This study presents
the �rst example of an arti�cial compound eye which is able to locate the features encountered
with a much greater accuracy than that imposed by its optics (i.e. ∆ϕ). Based on �ndings
originally observed in �y vision, we designed and constructed an active version of the previ-
ously described arti�cial compound eye CurvACE [Floreano et al., 2013,Viollet, 2014]. Active
CurvACE features two properties that are usually banned by optic sensor designers because they
impair the sharpness of the resulting images: optical blurring and vibration. The active visual
principle applied here is based on a graded periodic back-and-forth eye rotation of a few degrees
scanning the visual environment. Scanning micro-movements of this kind have been observed in
human [Rolfs, 2009] and several invertebrates such as crabs [Sandeman, 1978], molluscs [Land,
1969] and arachnids [Land, 1982,Kaps and Schmid, 1996].

The �rst micro-scanning sensor based on the periodic retinal micro-movements observed
in the �y (for a review, see [Viollet et al., 2014]) was presented in [Mura and Franceschini,
1996], whereas recent developments [Viollet and Franceschini, 2010,Kerhuel et al., 2012, Juston
et al., 2014] have led to the implementation of bio-inspired vibrating sensors endowed with
hyperacuity. However, hyperacuity has also been obtained in arti�cial retinas without using any
retinal micro-scanning processes, based on the overlapping Gaussian �elds of view of neighboring
photosensors (for a review, see [Wright and Barrett, 2013]). The authors of several studies have
assessed the hyperacuity of an arti�cial compound eye in terms of its ability to locate a point
source [Benson et al., 2009], a bar [Luke et al., 2012], a single line [Riley et al., 2008] (the
bar and the line both take the form of a stripe in the �eld of view), an edge [Brückner et al.,
2006], and to sense the edge's orientation [Wilcox and Thelen, 1999]. The robustness of these
visual sensors' performances with respect to the contrast, lighting conditions and distance from
the object targeted (contrasting edges or bars) has never been assessed prior to the present
study involving the use of a retinal micro-scanning approach. However, assuming that a priori
knowledge is available about the target's and obstacles' contrast, Davis et al. [Davis et al., 2009]
implemented e�cient target tracking and obstacle avoidance behaviour onboard a ground-based
vehicle equipped with a bulky apposition eye consisting of an array of 7 ommatidia.

As Floreano et al. [Floreano et al., 2013] have shown, an arti�cial curved compound eye
can provide useful optic �ow measurements. In addition, we established here that an arti�cial
compound eye performing active periodic micro-scanning movements combined with appropriate
visual processing algorithms can also be endowed with angular position sensing capabilities. With
this visual sensing methods, an aerial robot equipped with active CurvACE was able to perform
short range visual odometry and track a target moving over a textured ground. The bioinspired
approach used here to obtain hovering behaviour di�ers completely from those used in studies
involving the use of computer vision or optic �ow.

In this context, it is worth quoting, for example, two recent studies using binocular vision
[Shen et al., 2013] and monocular vision [Forster et al., 2014] to perform hovering without any
drift and visual odometry, respectively. However, the latency (about 18ms) of the embedded
visual processing algorithms used by the latter authors still limits the reactivity of the supporting
aerial robotic platform. Other strategies combined visual cues with barometric data to obtain a
visual odometer [Kendoul et al., 2009] or with an ultrasonic range �nder to implement a hovering
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autopilot [Engel et al., 2012]. In the case of hovering behaviour, many studies have been based on
the assumption that the robots in question have previous knowledge of particular features present
in the environment. Mkrtchyan et al. [Mkrtchyan et al., 2009] enabled a robot to hover using
only visual cues by �xating 3 black rectangles, but its altitude was controlled by an operator.
Likewise, landing procedures have been devised, which enabled robots equipped with IMUs and
visual sensors to detect speci�c geometrical patterns on the ground [Zhang et al., 2009, Yang
et al., 2013]. Bosnak et al. [Bosnak et al., 2012] implemented an automatic method of hovering
stabilization in a quadrotor equipped with a camera looking downward at a speci�c pattern.
Gomez-Balderas et al. [Gomez-Balderas et al., 2014] stabilized a quadrotor by means of an IMU
and two cameras, one looking downward and the other one looking forward. In the latter study,
the optic �ow was computed on the basis of the images perceived when looking downward and
the robot's position was determined by using a known rectangular �gure placed on a wall, which
was detected by the forward-facing camera.

Optic Flow (OF) has also been used along with IMU measurements to perform particular
�ight maneuvers such as hovering [Lim et al., 2012] and landing [Herissé et al., 2012, Ru�er
and Franceschini, 2014]. The robot developed by Carrillo et al. [Carrillo et al., 2012] rejected
perturbations by integrating the OF with information about the height obtained via an ultrasonic
range �nder. In their experiments, the goal was to follow a path de�ned by a contrasting line.

Honegger et al. [Honegger et al., 2013] have also developed an optical �ow sensor for stabi-
lizing a robotic platform hovering over a �at terrain, but the performances of this sensor over a
rugged terrain or a slope were not documented. On similar lines, Bristeau et al. [Bristeau et al.,
2011] developed a means of estimating the speed of a quadrotor by combining the speed given
by an optic �ow algorithm with that provided by an accelerometer.
The visual processing algorithm presented here estimates a displacement by measuring the an-
gular position of several contrasting features detected by active CurvACE. In this respect, this
method di�ers completely from those used in previous studies based on the use of the OF, which
are similar to speed estimation methods.

The active version of the CurvACE sensor and the �y's retinal micro-movements are described
in section 2.2.3A, and a model for the vibrating eye, including its special optics, is presented in
section 2.2.3B. The visual processing algorithms resulting in hyperacuity is described in section
2.2.4. A complete description of the implementation of this sensor on a tethered robot named
HyperRob is given in section 2.2.5, and the robot's capability to assess its own linear position
relative to the environment and track a target thanks to the active CurvACE, based on the novel
sensory fusion algorithm developed here is established in section 2.2.6 (see also section 2.2.4C).

2.2.3 Description of the visual sensor: active CurvACE

A - Inspiration from the �y's visual micro-scanning movements

In this study, visual hyperacuity results from an active process whereby periodic micro-movements
are continuously applied to an arti�cial compound eye. This approach was inspired by the reti-
nal micro-movements observed in the eye of the blow�y Calliphora (see �gure 2.1a). Unlike
the �y's retinal scanning movements, which result from the translation of the photoreceptors
(see �gure 2.1b) in the focal plane of each individual facet lens (for a review on the �y's retinal
micro-movements see [Viollet et al., 2014]), the eye tremor applied here to the active CurvACE
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by means of a micro-stepper motor (�gure 2.1c) results from a periodic rotation of the whole
arti�cial compound eye. The section 2.2.3C shows in details that both scanning processes lead
to a rotation of the visual axis.

Natural and Artificial
Compound eye

Retina

Muscle

a)
b)

b)

Stepper
motor 

c)

Figure 2.1: (a) Head of a Calliphora vomitaria (Picture : J.J. Harrison, Wikimedia
commons). (b) Top view of a �y's head showing the orbito-tentorialis
muscle (MOT in red) attached to the back of the head (the �xed part :
TT) and the base of the retina (the moving part : RET). The muscle MOT
is one of the two muscles responsible for the periodic retinal translation
(for a review on the �y's retinal micromovements see [Viollet et al., 2014]).
Modi�ed from [Hengstenberg, 1972]. (c) The active CurvACE with its
vibrating mechanism based on the use of a small stepper motor.

Here we describe in detail the active version of the CurvACE sensor and establish that this
arti�cial compound eye is endowed with hyperacuity, thanks to the active periodic micro-scanning
movements applied to the whole eye.

B - Modelling the optics

As described in [Floreano et al., 2013], the CurvACE photosensors array has similar character-
istics to those of the fruit�y's eye in terms of the number of ommatidia (630), light adaptation,
the interommatidial angle (∆ϕ = 4.2◦ on average) and a similar, Gaussian-shaped Angular
Sensitivity Function (ASF). This speci�c ASF removes "insigni�cant" contrasts at high spatial
frequencies.

To replicate the characteristics of its natural counterpart (see �gure 2.2a), CurvACE was
designed with a speci�c optical layer based on the assembly consisting of a chirped microlens
array (lenslet diameter: 172µm) and two chirped aperture arrays. In the case of active CurvACE,
the optical characteristics remain constant during the scanning process.

Each ASF of active CurvACE (�gures 2.2b and 2.2c) can be characterized by the acceptance
angle ∆ρ, which is de�ned as the angular width at half of the maximum ASF. The ASF along
1D s(ψ) of one CurvACE ommatidium can therefore be written as follows:

s(ψ) =
2
√

2 ln(2)

π∆ρ e
−4 ln(2) ψ2

∆ρ2 (2.1)

where ψ is the angle between the pixel's optical axis and the angular position of a point light
source.
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a) b)

c)

InterommatidialbanglebΔφ
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Crystallinebcone
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Figure 2.2: (a) Schematic view of a compound eye, showing the two main optical
parameters of interest: the interommatidial angle ∆ϕ, de�ned as the angle
between optical axes of two adjacent ommatidia, and the acceptance angle
∆ρ, de�ned as the angle at half width of the Gaussian shaped ASF. This
particular shape of ASF results from the combination of the Airy di�raction
pattern and the geometrical angular width of the rhabdom at the nodal
point of the lens [Land and Nilsson, 2012]. The diameter of the facet lenses
in the male blow�y Calliphora ranges from 20µm to 40µm, whereas that of
the peripheral rhabdomeres is 1.5− 2µm (see [Stavenga, 2003] for review).
Adapted with permission from [Horridge, 1977]. (b) CurvACE sensor and
(c) the horizontal angular sensitivity functions (ASFs) measured for each
arti�cial ommatidium along the equatorial row (red line) (see [Floreano
et al., 2013] for further details). The mean value of the interommatidial
angle ∆ϕ obtained in the middle row (red line) is 4.2◦± 0.8◦ (SD) and that
of the acceptance angle is 4.2◦ ± 0.8◦ (SD).

C - Mathematical description of signals generated by vibrating ommatidia

Figures 2.3a and 2.3b compare the rotation of the visual axes resulting from the translation of
the retina behind a �xed lens (e.g., in the case of the �y's compound eye) with the rotation of
the visual axes resulting from the rotation of the whole eye (e.g., like the mechanism underlying
the micro-saccades in the human's camerular eye [Carpenter, 1988]), respectively. In the active
CurvACE, we adopted the second strategy by subjecting the whole eye to an active micro-
scanning movement that makes the eye rotate back and forth.

As shown in �gure 2.3, the retinal micro scanning movements are performed by a miniature
eccentric mechanism based on a small stepper motor (1.7 grams in weight, 6mm in diameter)
connected to an o�-centered shaft [Juston and Viollet, 2012]. This vibrating mechanism makes
it possible to control the scanning frequency by just setting a suitable motor speed.

A general expression for the pixel's output signal is given by the convolution of the ASF s(ψ)

with the light intensity I of the 1-D scene as follows:
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Figure 2.3: Optical axis rotation resulting from (a) a micro-displacement ε of the pix-
els placed behind a �xed lens (e.g., in the case of a compound eye of the
�y) or (b) a rotation of the whole sensor (e.g., in the case of the active
CurvACE sensor). The micro-scanning of active CurvACE is subjected to
active periodic rotational movements generated by a miniature eccentric
mechanism. The angular vibration ψmod is generated by a miniature step-
per motor represented here by an orange shaft and a purple o�-centered
shaft, which translates along an elongated hole. The scanning frequency
can be easily adjusted by changing the rotational speed of the motor. The
scanning amplitude depends on the diameter of the o�-centered shaft.

Ph(ψc) =

∫ +∞

−∞
s(ψ) · I(ψ − ψc) dψ (2.2)

where ψc is the angular position of a contrasting feature (edge or bar) placed in the sensor's
visual �eld. For example, I(ψ) can be expressed for an edge as follows :

I(ψ) =

I1 for ψ < 0

I2 for ψ > 0
(2.3)

and for a bar:

I(ψ) =

I1 for | ψ |< L/2

I2 for | ψ |> L/2
(2.4)

with L the width of the bar (expressed in rad).

The microscanning movements of the pixels can be modelled in the form of an angular
vibration ψmod of the optical axes added to the static angular position ψc of the contrast object
(an edge or a bar). The equations for the two pixels (Ph1 and Ph2) are therefore:
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Ph1(ψ(t)) = Ph
(
ψc(t) + ψmod(t)− ∆ϕ

2

)
(2.5)

Ph2(ψ(t)) = Ph
(
ψc(t) + ψmod(t) + ∆ϕ

2

)
(2.6)

with ψmod obeying the following sinusoidal scanning law:

ψmod(t) = A · sin(2πfmod · t) (2.7)

With A and fmod describing the amplitude and the frequency of the vibration, respectively.
In the case of a whole rotation of the eye, this scanning law is achievable easily by a continuous
rotation of the motor with an o�-centered shaft. In the case of a translation of the pixels behind
a lens, the law should be weighted with the tangent of the ratio between the retinal displacement
ε and the focal length f of the lens.
At the end, the photosensor response is a modulated convolution of the light intensity with the
gaussian sensitivity function.

2.2.4 Insights into the visual processing algorithms

In this paper, we reuse the Local Processing Unit (denoted LPU) presented in [Juston et al.,
2014] and apply the principle to active CurvACE. A LPU is an elementary pair of photosensors
endowed with hyperacuity by means of a periodic vibration. The LPU is able to locate very
accurately an edge or a bar placed in its small Field Of View (FOV). An arti�cial compound eye
like CurvACE can provide several LPU outputs which can be merged to obtain a bigger FOV
and used as a basis for a higher level visual processing algorithm. In the following parts, we
describe the di�erent steps of the visual algorithm from the pixel processing to the novel fusion
of the LPU's output signals.

A - LPU: from photosensors to an accurate edge and bar location

The Local Processing Unit de�ned in �gure 2.4 is the application of algorithms presented in
[Kerhuel et al., 2012] and [Juston et al., 2014]. The �rst paper ( [Kerhuel et al., 2012]) leads to
the signal OutputPos resulting from the di�erence-to-sum ratio of the demodulated pixel output
signals described by equation (2.8). The demodulation is realized by means of a peak �lter which
acts as both a di�erentiator and a selective �lter centered at the scanning frequency (fp = fmod).
Then, an absolute value function cascaded with a low-pass �lter smooth out the pixel's output
signals. The second paper ( [Juston et al., 2014]) explains in details the edge/bar detection based
on the observed phenomena that the two pixels' output signals are in phase in the presence of
an edge and in opposite phase in the presence of a bar. At the output of the LPU, the signal θi
represents the position of the contrasting feature in the �eld of view (see equation (2.9)).

OutputPos =
Ph1demod

−Ph2demod
Ph1demod

+Ph2demod
(2.8)
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Figure 2.4: Block diagram of the elementary 2-arti�cial ommatidia local processing
unit (LPU) integrated into the active CurvACE for locating edges and
bars with great accuracy. The stepper motor (see �gures 2.1c and 2.3b)
generates a periodic rotation (green double arrows) of the overall visual
sensor, resulting in the angular microscanning of their visual axes, in keep-
ing with a sinusoidal law ψmod(t) (scanning frequency 50Hz, amplitude
about 5◦ peak to peak with ∆ϕ = 4.2◦ and ∆ρ = 4.2◦). Two parallel
processing pathways (one for edge/bar localization and one for edge/bar
detection) were implemented. The edge/bar localization block gives the
local angular position θi of an edge or bar placed in the visual �eld of two
adjacent photosensors. The edge/bar detection block detects the presence
of a bar or edge and triggers the appropriate gain: +1 for edges and -1 for
bars. The principle of this detector is described in [Juston et al., 2014].
The central frequency fp of the peak �lter is equal to the scanning fre-
quency (50Hz), whereas the cut-o� frequency of the second order digital
low-pass �lter is equal to 10Hz. Adapted from [Juston et al., 2014].

θi(ψc) = OutputDetector.OutputPos (2.9)

With OutputDetector equal to (-1) or (1) and θi the output signal of an LPU (see �gure 2.4).

B - Hyperacute localization of contrasting bars and edges

The characteristic static curves of the active CurvACE obtained with a contrasting edge and a
black bar 2.5cm in width subtending an angle of 2.86◦ are presented in �gure 2.5.

The curve in �gure 2.5a has a tangent hyperbolic pro�le with respect to the angular position
of the edge. It can be clearly seen by comparing the two curves plotted in �gure 2.5 that the slopes
of the characteristic static curves obtained with a bar and an edge are inverted. A theoretical
explanation for the inversion of the slopes is given in [Juston et al., 2014]. This inversion justi�es
the use of an edge/bar detector in the LPU (see �gure 2.4) to compensate for it and still be able
to distinguish the direction of the movement.

Moreover, the characteristic curves are independent of the ambient lighting condition. Figure
2.6 shows that the OutputPos signal remains constant even if the ambient light varies over about
one decade (from 180 to 1280Lux). A peak is visible at each light change and corresponds to the
transient phase during light adaptation of the CurvACE photosensors which lasts only 250ms.
In addition, �gure 2.6 shows that active CurvACE is a genuine angular position sensing device
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Figure 2.5: Characteristic static curves of the signal OutputPos (see �gure 2.4). The
OutputPos signal is plotted versus the angular position of a) an edge or
b) a bar of 2.5cm width placed 50cm in front of active CurvACE rotating
in 0.016◦ steps, each lasting 80ms. The blue points represents the mean
response of a LPU, and the blue shaded area represents the standard devi-
ation (STD) of the output. The characteristic static curve obtained with a
bar is inverted in comparison with that obtained with an edge. Bars there-
fore have to be distinguished from edges in order to select the appropriate
sign of the OutputPos(see �gure 2.4).
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Figure 2.6: The OutputPos signal, corresponding to the angular position of a con-
trasting edge, plotted versus time. Active CurvACE was subjected to a
variation of ambient lighting condition over about one decade and a forced
interruption of the visual micro-scanning.
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able to provide the angular position of a contrasting object placed in its FOV. Indeed, when
the scanning is turned o� and on again, the value of the measurement remained the same. This
experiment shows that the micro-scanning movement allows us to measure the position of a
contrasting object without any drift. A limitation comes here from the contrast, it cannot be
theoretically higher than 81.8% for an edge because the auto-adaptative pixel output signal is
no longer log linear for changes of illuminance (in W/m2) greater than one decade (see [Floreano
et al., 2013]).

C - Merging the output of local pairs of processing units

To endow a robot with the capability to sense its linear speed and position, a novel sensory fusion
algorithm was developed using several LPU in parallel. In this article, a 2D region of interest
(ROI) composed of 8 × 5 arti�cial ommatidia in the central visual �eld was used in order to
expose several pixels to the same kind of movements (�gures 2.9a and 2.9c). In other words, the
pattern seen by the sensor during a translation of the robot is a succession of edges and bars.
The algorithm used here and depicted in �gure 2.7 implements the connection between the 8× 5

photosensors' output signals to an array of 7 × 5 LPUs in order to provide local measurements
of edge and bar angular positions. Then a selection is performed by computing the local sum S

of two demodulated signals Phdemod obtained from two adjacent photosensors:

Sn,n+1 = Ph(n)demod + Ph(n+1)demod (2.10)

Indeed, as a signal OutputPos is pure noise when no feature is in the �eld of view, an indicator
of the presence of a contrast was required. The sum of the demodulated signals was used here to
give this feedback, because we observed that the contrast is positively correlated with the sum
and the Signal-to-Noise Ratio. Therefore, at each sampling step, each local sum S is thresholded
in order to select the best LPU's outputs to use. All the sums above the threshold value are kept
and the others are rejected. The threshold is then increased or decreased by a certain amount
until 10 local sums have been selected. The threshold therefore evolves dynamically at each
sampling time step. Lastly, the index i of each selected sum S gives the index of the pixel pair
to process. Thus, the computational burden is dramatically reduced. Moreover, this selection
helps to reduce the data processing because only the data provided by the 10 selected LPUs are
actually processed by the micro-controller.

In a nutshell, the sensory fusion algorithm presented here selects the 10 highest contrasts
available in the FOV. As a result, the active CurvACE is able to assess its relative linear position
regarding its initial one and its speed with respect to the visual environment.

It is worth noting that the selection process acts like a strong non-linearity. The output
signal θfused is therefore not directly equal to the sum of all the local angular positions θi. The
parallel di�erentiation coupled to a single integrator via a non-linear selecting function merges
all the local angular positions θi, giving a reliable measurement of the angular orientation of the
visual sensor within an in�nite range. The active CurvACE can therefore be said to serve as
a visual odometer once it has been subjected to a purely translational movement (see section
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2.2.6A). Mathematically, the position is given through the 3 equations as follows:
∆Pisel = θisel(t)− θisel(t− 1)

θfused(t) = θfused(t− 1) + 1
10

∑10
i=1 ∆Pisel

Vx(t) = K
Ts(θfused(t)− θfused(t− 1))

(2.11)

As shown in �gure 2.7, the robot's speed is determined by applying a low-pass �lter to the
fused output signal Sfused (which is the normalized sum of the local displacement error ∆Pisel),
whereas the robot's position is determined in the same way as θfused, with the gain K.

To sum up, the algorithm developed here sums the local variation of contrast angular positions
in the sensor �eld of view to be able to give the distance �own with the assumption that the
ground height is known.
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Figure 2.7: Visual processing algorithm
Description of the sensory fusion algorithm to assess the robot's speed V̄x
as well as its position X̄ resulting here from a translation of the textured
panel with respect to the arbitrary reference position (i.e. the initial posi-
tion if not resetting during the �ight). The 35 (7× 5) LPU output signals
corresponding to the ROI (8×5 photosensors) of the active CurvACE (see
�gure 2.9a) were processed by the 35 Local Processing Units (LPUs) pre-
sented in �gure 2.4. Here, the signal obtained before reaching the discrete
integrator, denoted Sfused, was used to compute the linear speed. This
procedure involved scaling the angular data to millimetric data (gain K)
and normalizing the time 1

Ts
, with Ts equal to the sample time of the sys-

tem. A �rst order low-pass �lter with a cut-o� frequency of 1.6Hz limited
the noise. The robot's position X̄ was scaled in millimeters by means of
the gain K. The visual processing algorithm presented here provides V̄x
and X̄ to the robot's autopilot (see �gure 2.13).
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2.2.5 HyperRob: an aerial robot equipped with an hyperacute compound

eye

The objective of this part of the study was to endow a visually controlled robot, named HyperRob,
with the capability to:

� stay at a desired position (reference position) with respect to the visual environment (a
textured panel, see �gure 2.8)

� return to the reference position even in the presence of perturbation applied to the robot
(lateral disturbance) or the textured panel over which the robot is �ying.

� track visual target placed between the robot and a textured background environment.

Figure 2.8 summarizes the 4 scenarios used to show the visual stabilization capabilities of
HyperRob.
Sections 2.2.3 and 2.2.4 presented the visual sensor and the algorithm we implemented onto
HyperRob. It is a twin-rotor robot tethered at the tip of a rotating arm. The robot was free to
rotate around its roll axis and could therefore make the arm rotate around its vertical axis (the
azimuth). The robot therefore travelled along a circular path with a radius of curvature equal to
the length of the arm (1m). Figure 2.9 shows the robot equipped with active CurvACE placed
on the experimental testbench.
This section introduces HyperRob and we will see in section 2.2.6B that the robot will be able
to stay at its initial position thanks to the vibrating active CurvACE estimating its linear speed
and position, assuming that its gaze is stabilized.

Moving panel

Lateral 
Disturbance 

Moving panel

Objects

Reference position

Lateral 
Disturbance 

18.5°

a) b)

c) d)

Figure 2.8: The robot HyperRob �ies over a textured panel and stays automatically
at a programmed reference position despite lateral disturbance (a and b),
changes in the ground height (b), movement of the ground (c) or small
relief introduced by several objects placed onto the ground (d).
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Figure 2.9: Experimental setup of the robot HyperRob
a) Active CurvACE with a region of interest (inset) composed of only 40
arti�cial ommatidia (8×5), each photosensor is composed of one pixel and
one lens. The �eld of view (FOV) covers about 33.6◦ by 20.2◦. (Picture
provided by courtesy of P. Psaïla)
b) The robot HyperRob and its active CurvACE sensor.
c) The complete setup consisted of a twin-propeller robot attached to the
tip of a rotating arm. The robot was free to rotate around its roll axis.
Arm rotations around the azimuth were perceived by the robot as lateral
displacements.

A - Gaze stabilization

In order to determine the robot's speed and position accurately, the gaze direction should be
orthogonal to the terrain. But as a simpli�cation, we chose to aligned it with the vertical,
assuming that the ground is mostly horizontal. Therefore, the eye has to compensate for the
robot's roll angle. To this end, the eye is decoupled from the robot's body by means of a servo
motor with a rotational axis aligned with the robot's roll axis. The gaze control system composed
of an inertial feedforward control makes the eye looking always in a perpendicular direction to
the movement during �ight (�gure 2.10). The rotational component introduced by the rotating
arm supporting the robot can be neglected in this study.
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Eye RollBody Roll

Figure 2.10: Decoupled eye on the roll axis.
Three examples of gaze stabilization. Despite the strong roll disturbances
applied by hand to the body, the gaze orientation was kept vertically
aligned by the mechanical decoupling provided by a fast servomotor be-
tween the robot's body and the visual sensor. It can be clearly seen
from the sequence of pictures that the yellow line remained horizontal
regardless of the robot's roll angle (red line).

B - Details of the robot HyperRob

HyperRob is an aerial robot with two propellers and a carbon �ber frame, which includes 2 DC
motors. Each motor transmits its power to the corresponding propeller (diameter 13cm) via a
8-cm-long steel shaft rotating on microball bearings in the hollow beam, ending in a crown gear
(with a reduction ratio of 1/5). Two Hall e�ect sensors were used to measure the rotational
speed of each propeller, and hence its thrust, via four magnets glued to each crown gear. Based
on the di�erential thrust setpoints adopted, HyperRob can control its attitude around the roll
axis, which is sensed by a 6-axis inertial sensor (here an InvenSense MPU 6000). The robot's
position in the azimuthal plane is controlled by adjusting the roll angle. In the robot, where only
the roll rotation is free, only 1 axis of the accelerometer and 1 axis of the rate gyro are used.
As shown in �gure 2.11, active CurvACE is mounted on a fast micro-servomotor (MKS) which
makes it possible to control the gaze with great accuracy (0.1◦) and fast dynamics (60◦ within
70ms, i.e. 860◦/s). This con�guration enables the visual sensor to be mechanically decoupled
from the body (see section 2.2.5A). The robot is fully autonomous in terms of its computational
resources and its power supply (both of which are provided onboard). The robot alone weighs
about 145g and the robot plus the arm weigh about 390g.

All the computational resources required for the visual processing and the autopilot are
implemented on two power lean micro-controllers embedded onboard the robot. The �rst micro-
controller (Microchip dsPIC 33FJ128GP802) deals with the visual processing, whereas the second
one (Microchip dsPIC 33FJ128GP804) is responsible for stabilizing the robot. The two micro-
controllers have a sampling frequency of 500Hz. The robot's hardware architecture is presented
in detail in �gure 2.12.

The micro-controller (µC) Vision communicates with CurvACE via a SPI bus and collects
the pixel values of the ROI. The signal Sfused is computed and sent to the µC Control via
another SPI bus. The latter completes the computation of the position X̄ and the speed V̄x.
This solution was chosen in order to keep the number of data sent via the SPI bus to a minimum.
The µC Control estimates the robot's attitude on the roll axis via a reduced complementary �lter
(inspired by [Mahony et al., 2008]) and controls the robot's linear position on the basis of the
two visual measurements (X and Vx see �gure 2.13). The µC Control then sends the propeller
speed setpoints to a custom-made driver controlling the rotational speed of each propeller in a
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Figure 2.11: Robot description
(a) HyperRob mounted at the tip of the arm, leaving it free to rotate
around the roll axis and move along a circular path in the azimuthal
plane.
(b) Schematic view of the robot. Four actuators were mounted onboard
the robot: two DC motors driving the propeller's rotation are set in the
carbon �ber body, one servomotor is used to stabilize the gaze and one
stepper motor is used to produce the eye tremor (vibration).
(c) CAD view showing the robot equipped with its visual sensor with
a FOV of 33.6◦ by 20.2◦. ωr1 and ωr2 are the two propellers' rotation
speeds, θr is the robot's roll angle, and θer is the eye-in-robot angle.

38



2.2. ARTICLE 1: A SMALL-SCALE HYPERACUTE COMPOUND EYE FEATURING
ACTIVE EYE TREMOR

closed-loop mode.

Batteries

DC motor DC motor 

IMU

S
er

vo
.

µC 
Vision

Bo
dy

SPI

SPI

2 PWMs

µC 
Control

data logging

UART

Driver

PWM

Figure 2.12: Electronic architecture
The autopilot's electronics board is composed of 2 micro-controllers.
The �rst one is involved in the visual processing algorithm
(dsPIC33FJ128GP802) and the second one (dsPIC33FJ128GP804) con-
trols the robot's roll and its linear position. The micro-controller denoted
µC Vision communicates with CurvACE and receives the digitized pixel
output values via a SPI bus. The second micro-controller, denoted µC
Control (dsPIC33FJ128GP804), receives the visual sensor's output data
from the micro-controller µC Vision via an additional SPI bus. The µC
Control then sends the propellers' setpoints to a custom-made driver in-
cluding a closed-loop control of the rotational speed of each propeller.

C - Control

Assuming the robot to be a rigid body and simplifying the dynamic model for a quad-rotor
presented in [Bouabdallah et al., 2004] in the case of a single roll axis, the robot's dynamics can
be written as follows: 

Ẋ = Vx

V̇x = −Tnom
m sin(θr)

θ̇r = Ωr

Ω̇r = Γθ = 2l
I δ

(2.12)

Where X is the robot's lateral position, Vx is its lateral speed, θr is the roll angle, Ωr is the
rotational roll speed, l is the robot's half span, I is the moment of inertia, δ is the di�erential
thrust and Tnom is the nominal thrust.

2δ = T1 − T2 = cT (ω2
r1 − ω2

r2)

T1 = Tnom + δ?

T2 = Tnom − δ?
⇔

 ωr1 =
√

(Tnom+δ?)
CT

ωr2 =
√

(Tnom−δ?)
CT

(2.13)
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where cT is the thrust coe�cient, and ωr1 and ωr2 are the right and left propeller speeds,
respectively, and δ = fprop(s)δ

?, where fprop(s) corresponds to the closed-loop transfer function
of the propellers' speed.

As described in �gure 2.13, the autopilot controlling both the robot's roll and its position is
composed of four nested feedback loops:

� the �rst feedback loop controls the robot's rotational speed by directly adjusting the dif-
ferential thrust, and hence the roll torque.

� the second feedback loop yields setpoints on the previous one for tracking the robot's
reference roll angle

� the third feedback loop adjusts the robot's linear speed by providing roll angle setpoints

� the fourth feedback loop controls the robot's linear position and yields the reference speed.

In the �rst and second feedback loops, the roll angle's estimation is obtained by means of
a reduced version of a complementary �lter described in [Mahony et al., 2008]. In the case of
HyperRob, since only a 1-D �ltering method is required, the attitude estimator becomes:

θ̄r = arcsin
(
Yacc
g

)
˙̂
b = −kb(θ̄r − θ̂r)

Ω̂r = Ω̄r − b̂
˙̂
θr = Ω̂r + ka(θ̄r − θ̂r)

(2.14)

where θ̄r is the roll angle calculated from the accelerometer measurement Yacc, b̂ is the estimated
rate gyro's bias, Ω̄r is the rate gyro's output measurement, θ̂r is the estimated roll angle, and Ω̂r

is the unbiased rotational speed. Here ka and kb are positive gains which were selected so as to
obtain a convergence time of 3 seconds and 30 seconds for the estimated angle and the estimated
rate gyro's bias, respectively.

The complementary �lter therefore yields the values of the rate gyro bias, the unbiased roll
rotational speed and the roll angle.
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Figure 2.13: Description of the control loops
The robot's control system consists mainly of four nested feedback loops:
one for the lateral position, one for the lateral speed VX , one for the
roll angle θr and one for the rotational roll speed Ωr. The propellers'
speeds ωr1,2 are controlled via an additional local feedback loop. All
the controller are detailed in table 2.1. Two Hall e�ect sensors are used
to measure the propeller speed used in the feedback loop controlling the
e�ective thrust. The inertial sensors give a biased rotational speed Ω̄r and
the acceleration Ācc. The active CurvACE sensor produces two visual
measurements, corresponding to the robot's relative position X̄ and its
linear speed V̄X .
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2.2.6 Application to short range odometry, visual stabilization and tracking

In the various experiments performed in this study, a serial communication with a ground station
was used to record the data provided by the robot. A VICON motion tracking system was run
at the same time to obtain the ground truth data. A textured panel was placed 39cm below the
robot. During the experiment involving the translation of the panel, as the sensor can only sense
the movement along one direction and the robot travels along a circular path, the data were
projected in order to obtain a comparable dataset. Thus, at each time step, we projected the
position vector into the robot frame and took only the tangential components of the displacement.

In this section, we report on several experiments which were carried out in order to test the
robot's capability to perform various tasks. In all these experiments, thanks to the e�cient gaze
control system compensating for the robot's roll, the visually controlled robot experienced a
quasi translational optic �ow elicited by the perturbations applied either to the robot itself or to
the textured panel. In the �rst experiment, the sensor played the role of an odometer. The robot
achieved accurate hovering performances despite the lateral disturbances, as well as an e�cient
tracking capability. All these experiments con�rmed that the robot was able to perform robust
short-range visual odometry, i.e., to estimate its linear position before returning automatically
to an arbitrary reference position adopted.

A - Short-range visual odometry
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Figure 2.14: Robustness of the sensor
Comparison between the active CurvACE sensor's measurements and the
ground truth position given by the VICON system when the robot made
a lateral movement and returned to its initial position. The sensor's out-
put remained fairly stable regardless the lighting conditions and struc-
ture of the pattern, giving a standard error ranging from 2.3 to 7.8%
(Deviation = Stderror(yi−xi)

max(xi)−min(xi)
).
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The fused visual output signal Sfused provided by the active CurvACE depends on the visual
environment: if there are no contrasts, the sensor will not detect any visual cues and will therefore
not be able to specify the robot's position accurately. The richer the visual environment is (in
terms of contrasts), the better the position measurement. In order to compare the output of the
sensor with the ground-truth measurements, three experiments were conducted under di�erent
visual conditions.
In these experiments, the robot was moved manually over two di�erent panels under two di�erent
ambient lighting conditions from right to left and back to the initial position with its gaze
stabilization activated. The results obtained, which are presented in �gure 2.14, are quite similar
for each round trip, giving a maximum error of 174mm. Figure 2.14 shows that the output in
response to a textured panel and one composed of a single 5cm-wide black bar was similar.
Therefore, assuming the distance to the ground to be known, the active CurvACE was able to
serve as a visual odometer by measuring the robot's position accurately in the neighbourhood of
its initial position.

B - Lateral disturbance rejection

Above a horizontal textured panel

Lateral disturbances were applied by pushing the arm in both directions simulating gusts of
wind. In �gure 2.15, it can be seen that all the lateral disturbances were completely rejected
within about 5 seconds, including even those as large as 40cm. The dynamics of the robot could
be largely improved by using a robot with a higher thrust or a lighter arm in order to reduce
the oscillation. Figure 2.15b and 2.15c show that the robot was always able to return to its
initial position. With its active eye, the robot can compensate for lateral disturbance as large
as 359mm applied to its reference position with a maximum error of only 25mm, i.e. 3% of the
�own distance. This error is presumably due to the selection process which does not ensure to
select the same features in the outward path and in the way back to the reference position or
maybe the assumption of a linear approximation of the inverse tangent function does not hold
entirely within the entire �eld of view. As a consequence, thanks to the active visual sensor and
its capability to measure the angular position of contrasting features, the robot HyperRob is
highly sensitive to any motion and thus can compensate for very slow perturbation ranging here
from 0 to 391mm/s.

Above an evenly sloping ground

In the previous experiment, it was assumed that the ground height must be known to be able
to use the conversion gain in the fused output signal Sfused. The same experiment was repeated
here above a sloping ground (see �gure 2.16). The robot's height increased sharply in comparison
with the calibration height. The robot's height varied in the range of +/−74mm and starts with
an o�set of +96mm compared to the calibration height. As shown in �gure 2.16b, the estimation
of the traveled distance was always underestimate because the robot was always higher than the
calibration height. However, the robot was still able to return to its starting position with a
maximum error of only 45mm (time t = 36.5s) for a disturbance of 210mm (i.e. 10.5% of the
�own distance).
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Figure 2.15: Lateral disturbance rejection over a naturally textured Panel
a) Robot's position (in blue) superimposed on the panel's position (in
red), both measured by the VICON system. The robot rejected the series
of disturbances and returned to its initial position with a maximum error
of 25mm in less than 5 seconds.
b) The visual errors measured by the robot (red) and the VICON (blue)
were very similar. With large disturbances, small errors occurred in the
visual estimation of the robot's position without noticeably a�ecting the
robot's capability to return automatically to its starting position.
c) Ground-truth measurement of the robot speed error (red curve) and
the visual speed error (blue curve) measured by the robot thanks to active
CurvACE. These two curves show that the robot was able to compensate
for maximum lateral speed of 391mm/s.
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Figure 2.16: Disturbances above a sloping ground
a) Picture of the robot above the sloping ground at an angle of 18.5◦ with
respect to the horizontal. In the case of a 300mm horizontal displacement,
the height increased by 100mm. De�nitions of the terms Height and Shift
are also displayed. The robot is subjected to a series of disturbances with
a maximum amplitude of 200mm.
b) Horizontal shift measured by the sensor (blue) and the theoretical one
calculated from VICON data (red).
c) Vertical distance from the robot to the panel in comparison with the
calibration height of 390mm.
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C - Tracking

The robot's tracking performances are presented in this subsection. Three di�erent tracking
tasks were tested:

� tracking a moving textured panel

� tracking a moving textured panel with 3-D objects placed on it

� tracking moving hands perceived above a stationary textured panel

Panel Tracking

In this experiment, the panel was moved manually and the robot's reference position setpoint
X? was kept at zero. The robot faithfully followed the movements imposed on the panel. The
few oscillations which occurred were mainly due to the robot's dynamics rather than to visual
measurement errors. Each of the panel's movements was clearly detected, as shown in �gure
2.17b, although a proportional error in the measurements was sometimes observed, as explained
above.

Tracking a moving rugged ground

In the second test, some objects were placed on the previously used panel to create an uneven
surface. The robot's performances on this new surface were similar to those observed on the �at
one, as depicted in �gure 2.18. The visual error was not as accurately measured as previously
over the �at terrain because of the changes in the height of the ground. But the robot's position
in the steady-state was very similar to that of the panel. The maximum steady-state error at
t = 19s was only 32mm.

Toward �gure-ground discrimination: hand tracking

The last experiment consisted of placing two moving hands between the robot and the panel.
Markers were also placed on one of the hands in order to compare the hand and robot posi-
tions: the results of this experiment are presented in �gure 2.19. As shown in the video in the
Supplementary Data and in �gure 2.19, the robot faithfully followed the hands when they were
moving together in the same direction. By comparing the robot position error seen by the active
CurvACE with the ground-truth error, it was established that the robot tracked the moving
hands accurately with a maximum estimation error of 129mm.
Our visual algorithm selects the greatest contrasts in order to determine its linear position with
respect to an arbitrary reference position. Therefore, when the hands were moving above the
panel, some stronger contrasts than those of the hands were detected by the visual sensor, which
decreased the accuracy of its tracking performances. However, this experiment showed that the
robot is still able to track an object when a non-uniform background is moving di�erently, with-
out having to change the control strategy or the visual algorithm. The robot simply continues
to track the objects featuring the greatest contrasts.
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Figure 2.17: Tracking a naturally textured Panel.
When the textured panel was moved manually below the robot, Hyper-
Rob automatically followed the movement imposed by the panel.
a) Tracking of the panel by the robot. The red line corresponds to the
panel's position and the blue line to the robot's position, both measured
by the VICON system.
b) Comparison between the position measurement error given by the vi-
sual system (in blue) and the ground truth data (in red) given by the
VICON system. The results show that the robot tracked the moving
panel accurately with a maximal position estimation error of 39mm for
a panel translation of 150mm.
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Figure 2.18: Tracking a rugged ground with height variations formed by objects.
A rugged surface including several objects was moved below the robot,
which had to follow the movements imposed on the ground.
a) Picture showing the robot's visual environment during the test.
b) Tracking of the panel by the robot. The red line corresponds to the
panel position and the blue line to the robot's position, both measured
by the VICON system.
c) Comparison between the position measurement error given by the vi-
sual system (in blue) and the ground-truth error (in red) given by the
VICON measurements.
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Figure 2.19: Tracking moving hands above a textured panel.
In this experiment, the textured panel was kept stationary while two
hands were moving horizontally together between the robot and the panel.
a) Picture of the hands during the experiment conducted with VICON.
Markers are only required to monitor the hands' position. In the video
provided in the Supplementary Data, we showed that the robot's perfor-
mances are similar without those markers.
b) Plots of the textured panel's position (red), the robot's position (blue)
and the hands' position (green), all measured by VICON. The robot fol-
lowed the moving hands faithfully over the ground.
c) Comparison between the error measured by the eye (blue), and the
ground-truth error provided by the VICON system (green). The latter is
equal to the (Hand_Position)-(Robot_Position).
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2.2.7 Conclusion

In this paper, we describe the development and the performances of a vibrating small-scale
cylindrical curved compound eye, named active CurvACE. The active process referred to here
means that miniature periodic movements have been added in order to improve CurvACE's
spatial resolution in terms of the localization of visual objects encountered in the surroundings.
By imposing oscillatory movements (with a frequency of 50Hz) with an amplitude of a few degrees
(5◦) on this arti�cial compound eye, it was endowed with hyperacuity, i.e., the ability to locate an
object with a much greater accuracy than that achieved so far because of the restrictions imposed
by the interommatidial angle. Hyperacuity was achieved here by 35 Local Processing Units
applying the same local visual processing algorithm across a ROI of active CurvACE consisting
of 8×5 arti�cial ommatidia. The novel sensory fusion algorithm used for this purpose, which was
based on the selection of the 10 highest contrasts, enables the active eye (2D-FOV: 32◦ by 20◦)
to assess its displacement with respect to a textured environments. We even established that
this new visual processing algorithm is a �rst step toward endowing robots with the ability to
perform �gure/ground discrimination tasks. By applying miniature movements to a stand-alone
arti�cial compound eye, we developed a visual odometer yielding a standard error of 7.8% when
it was subjected to quasi translational movements of 1m. Moreover, active CurvACE enabled a
robot to hover and return to a position after perturbations with a maximal error of 2.5cm for
experiments based on a �at terrain, which is state-of-the-art performance in aerial robotics (see
table 2.2), although our study is about a tethered robot �ying indoor.
All the solutions adopted in this study in terms of practical hardware and computational resources
are perfectly compatible with the stringent speci�cations applying to low-power, small sized, low-
cost micro-aerial vehicles (MAVs). Indeed, thanks to active CurvACE, we achieved very accurate
hovering �ight with few computational resources (only two 16-bit micro controller and few pixels
(only 8×5). However, the 1D visual scanning presented here should be extended to a 2D scanning
so as to enable free �ight, which, however, would require a completely new mechanical design. In
addition, the architecture of the 2-D visual processing algorithm will have to be revised to make
it compatible with low computational overheads. It is worth noting that the gaze stabilization
re�ex implemented onboard the present robot requires very few computational resources and
allows CurvACE to process visual information resulting from purely translational movements.
In addition, recent robotic studies have shown that gaze stabilization can be a useful means of
achieving automatic heading [Kerhuel et al., 2010] and vision-based hovering [Manecy, 2014].
The MAVs of the future (e.g., [Ma et al., 2013]) will certainly require very few computational
resources to perform demanding tasks such as obstacle avoidance, visual stabilization, target
tracking in cluttered environments and autonomous navigation. Developing airborne vehicles
capable of performing these highly demanding tasks will certainly involve the use of the latest
cutting-edge technologies and bio-inspired approaches of the kind used here.
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Appendix

Table 2.1: Controllers' parameters

Controller Transfer Functions Parameters value

Position controller Kx Kx = 0.6s−1

Lateral speed Controller KV .
τV s+1
s KV = 0.7

τV = 1
0.7

Roll Controller Kθ Kθ = 0.6

Robot Rot. Speed Controller KΩ.
τΩs+1
s KΩ = 0.06

τΩ = 0.45
Motor Rot. Speed Controller Kω.

τωs+1
s Kv = 0.9

τω = 0.05
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2.3 More insights on the algorithm and its performance

2.3.1 Identi�ed limits of the algorithm

This algorithm relies on several assumptions:

� the altitude of the robot is considered known and constant, in order to convert the angular
measurement into lateral displacement.

� the whole �eld of view must experience pure translational movements thanks to a gaze
stabilization re�ex that compensates for body's rotations, or at least the same movement
if a derotation is applied afterwards thanks to gyrometer measurements.

A limit of the algorithm is the non linearity of the response, caused mostly by the non linearity
of the output characteristic and sometimes a lack of contrasts.

Moreover, during some tests, the responses of the robot were di�erent to the expected be-
havior. It was mainly due to undesired shadows on the panel and when the latter was moved,
the shadow did not and the robot was selecting this high contrast, makes it steady although it
should follow the panel. The shadow problem is very complicated to be overcome without any
object recognition. It is similar to track a partially masked object.

2.3.2 A practical test with a smaller FOV

The objective was to test the possibility to measure a displacement with a small FOV, in order to
apply an odometry algorithm in an unknown environment with obstacles at di�erent distances.
Moreover, in the previous paper, the FOV was quite large, which makes it di�cult to measure
accurately movements close to the focus of expansion. Therefore, an experiment was conducted
with another sensor called µEye presented in [Juston, 2013]. The sensor was based on an o�-
the-shelf photodiode array (iC-LSC from iCHaus Company, http://www.ichaus.de) consisting of
2 rows of 6 photodiodes. To improve the Signal-to-Noise Ratio, the photosensors in each column
were paired in order to increase the sensitive surface. The photodiode array was mounted behind
a defocused lens, to create the Gaussian shape angular sensitivity. The electronic of the sensor
is close to the motion sensor presented in [Roubieu et al., 2011]. The advantage of this sensor
compared to CurvACE is its higher sensitivity, but it is not endowed with light adaptation at
the pixel level.

Figure 2.20 shows the visual sensor and the setup of the experiment. The sensor is placed at
a certain distance of a naturally textured pattern. The picture was kindly provided by R.S.A.
Brinkworth and D.C. O'Carroll and printed on a strip. A motor was able to make it rotate to
stimulate the visual sensor with translational movements. The test bed was previously used to
test a motion sensor [Roubieu et al., 2011].

An experiments was made placing the sensor at a distance of 49cm from the strip which was
moving at a speed of 8cm.s−1, leading to an optic �ow of 9.3◦.s−1. The results of the modi�ed
odometry algorithm (see �gure 2.21) are depicted in �gure 2.22. First, the experiment was
realized by taking all the pair signals into account for the odometry calculation. Then, a threshold
was applied on the sum of the demodulated photosensor signals for each pair. The results are
di�erent because some low contrasts are not taken into account in the output signal anymore.
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Figure 2.20: a) Picture of the µEye visual sensor. It is composed of 6 horizontal pixels
placed behind a lens with a miniature stepper motor (diameter 6mm) to
apply the micro-vibrations to the eye via a miniature crank mechanism
(adapted from [Juston and Viollet, 2012]). b) Setup of the experiments.
The visual sensor is placed at a distance Dh from a rotating at a speed
Vwall, equivalent to an optic �ow ωwall. The setup is similar to the one
used in [Roubieu et al., 2011].

The output signal Θi, which is the integration over time of ∆Pi, is sometimes completely �at.
It can also be seen by comparing �gure 2.22a) and b) that the integration is not as low in both
cases after 80s. However, the Θfused output signals with and without threshold reach a close
value during the same time. These results show that low contrasts are closed to noise signals but
still provide information in some situations. The averaging e�ect is also highlighted. It should
also be stressed that the output signal of the visual processing is highly sensitive to contrasts,
their level and spatial frequency. Hence, the threshold value should be chosen carefully. As a
reminder, in the robotic experiment, it was the ten pairs that see the highest contrasts, which
were selected for the fused signal.

In the �gure 2.22a, the di�erent slope of the Θi signals of di�erent pairs was observed. It
is not very clear why, but I suppose it is due to the orientation of the light source which was
not perpendicular to the strip. It could also be due to a misalignment of the sensor, which is
not exactly horizontal and oriented at 90◦ of the strip. The di�erence of the sensitivity of the
photodiodes could not be the source of this asymmetry because as shown in �gure 2.23, they
have similar shapes and amplitudes.

As it can be seen in �gure 2.22, the visual processing algorithm when combined with a 6-pixel
sensor provide a non-linear and even non-monotonous output signal resulting from the merge
between the 5 LPUs. On the fused value the in�uence of the pair measurement is reduced, that
is why, with a higher number of pair used in the fused output, the average is giving a reliable
information. It explains that in the robotic experiment, the use of the 35 pairs are giving a
su�ciently good measurement to enable the robot to stabilize itself.
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Figure 2.22: a) Θi is the integration over time of the respective ∆Pi signals without
threshold processing b) Θi with threshold equal to 80000 c) Comparison
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and t = 42s, show an example of a non-monotonous measurement. It
is clearly visible on a single pair output, but smooth out on the Θfused

measurement. (see appendix B.2 for a zoom on this part)
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Figure 2.23: Angular sensitivity distribution measured for each photodiode of the µEye
sensor, obtained by rotating the sensor in front of a point light source.
The interommatidial angle ∆ϕ and the acceptance angle ∆ρ are calcu-
lated from a Gaussian approximation of the curves. From [Juston, 2013]

2.4 To go further

2.4.1 Expansion measurement

An interesting point would be to test if our hyperacute visual sensor could be used to detect
an expansion and thus a possible frontal collision. This could be done by separating the FOV
view into di�erent ROI with some overlapping between the direction of motion and enough
measurements for the fusion to ensure linearity, as seen in �gure 2.24. Indeed, the FOV of each
side should contain a su�cient number of pairs to provide a reliable measurement.

2.4.2 Odometry

The state-of-the-art nowadays for ego-motion estimation are mainly of two kinds. First, the visual
odometry techniques enables to measure the travelled distance [Scaramuzza and Fraundorfer,
2011]. It consists of using features extraction to compute the motion realized between 2 frames.
SLAM (Simulatneous Localization and Mapping) is using similar basis but with an increased
complexity. The goal here is also to map these features acquired along the path into a depth
map using either binocular cameras or a monocular camera. Usually the map obtained in the
second case should be scaled to be usable. This scaling process can be realized with a motion
estimation thanks to an IMU (called Visual Inertial Measurement Unit). Di�erent approaches
allows to tackle high speed motion estimation [Shen et al., 2015,Ling and Shen, 2015] or poorly
textured environment [Holzmann et al., 2016].

If we want to achieve correct ego-motion estimation with the active CurvACE sensor, as done
today with SLAM and visual odometry techniques, a solution should be found to compensate
the drift, due to the noise. A mean of detecting a pattern should be applied to recognize the
location where the robot has already been. But, the complexity would greatly increased with
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Figure 2.24: Example of di�erent ROIs which could be used to detect translation in
front of the sensor and expansion. The translation would be measured by
the yellow ROI (6×7 photosensors) and the expansion would be measured
by the green and red ones (6×7 both). The blue ROI (6×7) with another
on the opposite side could provide a measurement of a rotation of the
sensor. The addition of the yellow ROI could even provide robustness in
case of complex movements.

such solution. Moreover, our current sensor disparity is also a limitation to overcome, in order
to have the same response in front of the same pattern seen by 2 di�erent photosensors. The
hardware could be improved, but the software could also plays a key role to provide solutions.

2.4.3 Bio-inspired �ight

In this experiment, a rate gyro and an accelerometer were used to estimate the attitude of the
robot and therefore, in the VOR to ensure that the gaze direction is always vertical. Thanks to
the halteres, it is possible for the diptera to sense the rotational speed, like rate gyro does [Taylor
and Krapp, 2007]. However, the insect does not seem to be endowed with accelerometer, it should
be done di�erently to be closer to the insect �ight. It is suggested that the light is used as a cue
for the orientation [Goulard et al., 2015].

Another solution would be to use the same visual algorithm on both side (see �gure 2.24), it
should be possible to have a measurement of the eye roll angle with respect to the environment.
By combining the roll measured optically to the rate gyro measurement, it could be possible to
use these cues in the complementary �lter and replace the accelerometer in the VOR control
loop. However, it is di�cult to foresee the e�ect of a combined rotation and translation with
this principle. The work of Manecy et al. [Manecy et al., 2015] could also be inspiring for this
topic if a speci�c target is identi�ed and tracked. It is quite similar to the behavior described in
hover�y [Collett and Land, 1975], which can hover when it sees a female or lands on a �ower.
Keep tracking a target on a textured ground is also a big challenge to overcome to be able to
stabilize the robot.

But it should be kept in mind that the insects are using data fusion involving several sensors
of di�erent kind, like the compound eye, but also the ocelli which seems to be involved in gaze
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control and orientation detection using the dorsal light response, and antennea and hairs as
air�ow sensors [Taylor and Krapp, 2007].
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Chapter 3

Subtended angle estimation and linear

angular positioning of a bar
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3.1 Summary

From the previous chapter, it has been shown that it is possible to have the angular position of
the sensor compared to its environment [Juston, 2013,Colonnier et al., 2015b], because all the
contrasts will move the same way in the case of a rotation. This hypothesis still hold in the
case of a plane if it is su�ciently smooth to measure translation, as established in [Colonnier
et al., 2015a]. However, this is no longer true for non-smooth surfaces or a forest of obstacles
located at various distances from the sensor. The angular speed of the features in the FOV will
not move at the same speed. An average is therefore not possible. It is also di�cult to have a
reliable measurement if the visual environment is not textured enough in the sense that if a few
numbers of LPUs see a contrast, the displacement estimation is not very accurate. Therefore,
the ability to accurately measure the displacement of features in a small area of the FOV is
necessary. For example, in the case of detecting a frontal obstacle like a tree, the displacement of
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the contrasts between the trunk and the background should be measured. The use of vibration
could be biologically plausible in order to track a moving target [Viollet, 2014] in the frontal part
of the �eld of view.

It has been established that the measurement of an edge position does not vary according
to the distance. A single pair with an appropriate Look-Up Table (LUT) are enough to localize
edges according to the OutputPos response (see �gure 2.4 for the de�nition). However, for a
bar with a small width, it is no longer true because the OutputPos response does vary with the
distance.

The aim of the work developed in this chapter is to describe an algorithm to assess the
azimuthal position of a bar and its size in the �eld of view of the sensor, i.e. its subtended
angle. It would be applied for a small bar in diameter with a subtended angle inferior to 2∆ϕ.
The idea is to use the measurements of 2 neighboring pairs, in addition to a proper calibration
of the OutputPos according to the position and subtended angle of a bar. An algorithm can
therefore be designed to estimate these parameters in a bar localization task. Compared to
previous studies carried out at the laboratory, the proposed algorithm dramatically improves the
linearity of the sensor in terms of bar localization. The results obtained in this chapter were
good in steady conditions. But the subtended angle measurement was not reliable enough in a
tracking situation, though the angular position was well-measured.

3.2 Observation

Based on the observation made and described by L. Kerhuel [Kerhuel, 2009] (see �gure 3.1), it
was observed that the response of the di�erence over the sum of two neighboring photosensors
submitted to a vibration and demodulated can lead to two di�erent responses according to the
pattern in the �eld of view. This output was previously named the SV ODKA response; V ODKA
stands for Vibrating Optical Device for the Kontrol of Autonomous-robots [Kerhuel, 2009] and
referred to OutputPos in this thesis according to �gure 2.4.

It can be seen that the OutputPos response, in the case of a bar in the FOV (�gure 3.1a),
can be divided in 3 parts. On the middle part where ψc is between [−∆ϕ

2 ; ∆ϕ
2 ]. The response

is monotonously decreasing for subtended angle bigger than 3◦ in the example. On the left and
the right, on the spacing ]−∞;−∆ϕ

2 ] and [∆ϕ
2 ; +∞[ respectively, the response is monotonously

increasing in every case. The shape, however, is evolving, from a hyperbolic tangent function for
large subtended angle to hyperbolic function for small ones.

The idea that will be developed here is to use 4 photosensors, linked in 3 pairs, to compute
both the subtended angle and the position at the same time. Indeed with 4 photosensors it
is possible to have a value on the 3 parts of the characteristics of the OutputPos response.
The left, central and right pairs are providing the right, the central and the left parts of the
characteristic, respectively. Using lookup tables, it could be possible to compute a solution for
the bar localization.
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Figure 3.1: a) The simulated response of the VODKA sensor in front of a bar of width
L (here ∆ϕ = ∆ρ = 3.8). The response varies according to the position
of the bar and its subtended angle in the sensor FOV. It can be noticed
that for very small subtended angles, the shape of the response becomes
non-monotonic. A position of the bar can therefore not be measured at
the output. Adapted from [Kerhuel, 2009]. b) The simulated response of
the VODKA sensor rotated in front of a contrasted edge. On both �gures,
the red dashed lines represent the spacing [−∆ϕ

2 ; ∆ϕ
2 ] between the axis of

2 photosensors. These simulated response are calculated with the approx-
imation that the demodulation is a derivative. Reprinted from [Manecy,
2015]

3.3 The algorithm

3.3.1 Calibration for the simulation

As mentioned in the previous section 3.2, the OutputPos can be divided into 3 parts that are
described by 3 functions fl(ψ, α), fm(ψ, α) and fr(ψ, α). A calibration is possible to identify
these 3 functions for each parts of the characteristics de�ned in �gure 3.2.

To plot the characteristics shown in �gure 3.2, the responses of 2 photosensors were simulated
by rotating the sensor in front of a bar. The bar's width was changed in di�erent simulations
to get the di�erent datasets. The simulated vibration was made at a frequency of 50Hz with
an amplitude of 2.1◦. The demodulation process is the same as in the previous chapter, except
that an envelop detector was added to increase the bandwidth, as done in [Manecy, 2015]. It is
therefore possible to have the outputs Sleft, Smid and Sright of each respective function fl, fm
and fr and identify them.
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Figure 3.2: The OutputPos simulated response of a sensor in front of a bar of width
L (here ∆ϕ = ∆ρ = 4◦). The response varies according to the position
of the bar ψgaze and its subtended angle α in the visual sensor FOV.
Compared to the simulated results presented in �gure 3.1, the assumption
of the derivative is not made. Instead, the simulation uses the photosensors
response with a vibration of amplitude A = 2◦. The demodulation process
is the same that would be used on the real platform. The characteristics
can be divided in 3 functions fl(ψ, α) (in yellow), fm(ψ, α) (in blue) and
fr(ψ, α) (in red). These 3 functions are monotonous for α > ∆ϕ
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de�nition domains ]−∞;−∆ϕ
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2 ] and ]∆ϕ
2 ; +∞[ respectively.
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3.3.2 Processing of the Output Signals to provide Angular position and Sub-

tended Angle

With 4 photosensors, it is possible to have 3 pairs separated by an angle of ∆ϕ. The 3 pairs'
OutputPos can be associated to the value Sright, Smid and Sleft respectively. The pair which
sees the bar in between its two photosensors can be identi�ed thanks to the edge/bar detector
described in [Juston et al., 2014]. Indeed, the bar is detected when the �ltered signals of the
paired photosensors are out of phase, which happens when the center of the bar is in the spacing
[−∆ϕ

2 ; ∆ϕ
2 ]. The left pair would then see the bar at its right, so it gives the Sright signals and

the same way, the right pair would provide the Sleft signal.
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Figure 3.3: Look-Up-Tables used for the computation of the functions hl(Sleft, α),
hm(Smid, α) and hr(Sright, α) in (a), (b) and (c) respectively.

After having identi�ed upstream the invert functions hl(Sleft, α), hm(Smid, α) and hr(Sright, α)

of fl, fm and fr respectively (see �gure 3.3), it is therefore possible to identify the parameters
of the bar localization, its orientation ψ and its subtended angle α image of the distance. It
should be mentioned that the angle at the output of the hl and hr is shifted, compared to the
characteristics presented in �gure 3.2, with o�sets of +∆ϕ and −∆ϕ respectively. Indeed, the ψ
angle is given according to the middle pair.

The algorithm proposed here is using the response of the middle pair and one of its neighbor.
A selection is made between the left and the right pair according to the sign of the Smid signal. If
it is positive, the left pair is used and the right one otherwise. This selection process was chosen
to use the pairs that are closer to the bar.

Then, to compute the solution, an error function Err_fcn, which is the di�erence of the 2
selected functions, is calculated. The Err_fcn is only depending on the α value. Here Sleft,
Sright and Smid are the measured inputs and are therefore known. The solution of the equation
Err_fcn = 0 should be found to obtain α and then the value for ψ can be calculated. This
algorithm is explained in the Algorithm 1.

A limitation appeared, because for some positions and because of the noise, the error function
never crosses zero or sometimes does so several times. Figure 3.4 shows all the possibilities for
the values of Smid combined with Sleft and Sright respectively. It also explains the choice of
using the left characteristics when Smid is above 0 and the right one in the other case. In the
case where no solution are found, it was chosen to keep the old value of α and compute the ψ
position with the hm function. In the case where 2 or more solutions were found, the closest to
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Algorithm 1 Pseudocode of the bar localization process
1: acquisition Sleft, Smid and Sright
2: if SMid > 0 then
3: Err_fcn(α) = hm(Smid, α)− hl(Sleft, α)
4: else
5: Err_fcn(α) = hm(Smid, α)− hr(Sright, α)
6: end if
7: Solve Err_fcn(α) = 0→ αoutput
8: ψ = hm(Smid, αoutput)
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Figure 3.4: Computation of all the possibilities of combination for (a) Smid and Sleft
and (b) Smid and Sright. For each combination the Error function is cal-
culated and the number of times the function crosses 0 is checked. In
principle, a unique solution would be perfect and indicate a unique couple
(ψ, α). The green line are polynomial interpolation of the boundaries be-
tween the green and the other areas when Smid is higher than −0.5 for (a)
and lower than 0.5 for (b).

the old α value was selected.

Remark 1 A thought of using the interpolate boundaries occurred (see the green lines in �gure

3.4), in order to check if the two measurement coordinates, (Smid, Sleft) or (Smid, Sright), are

inside the green zone. It would have perhaps enabled more robust results. But the realization was

not so simple for the experimental characteristics. The green area is not as well-shaped as in the

simulated one.

3.4 Simulation Results

A simulation was made in order to test this algorithm. Some noises were added to the photosen-
sors' signals to have relevant data and proved the possibilities to use such an algorithm, which
relies on the quality of the calibration process. Figure 3.5 shows the results corresponding to
two experiments: one with a constant subtended angle and a variation of the eye orientation and
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Figure 3.5: a-d) Simulation of a 6-photosensors eye rotating around its vertical axis at
a constant distance of 1.5m from a bar. e-h) Simulation of the same eye
seeing a bar at a constant ψ position equal to 0.25◦, but the distance varies
from 2.5m to 78cm. a) and e) shows the measured angular position ψ in
the sensor FOV and the theoretical one, in blue and green respectively.

another with a constant eye orientation and a varying subtended angle. The �rst one simulates
the rotation of the eye in front of a bar and the second one the translation of the bar that goes
away from the eye. The results show that the orientation is always quite well estimated with a
maximal error close to 1◦. However, the error of the subtended angle is a bit higher than 2◦. It
can also be noticed that the value is conserved between 2 pairs (�gure 3.5c) because the old value
is kept when no better one is available; the old one is conserved to compute the orientation value.
Moreover, on �gure 3.5g, it can be seen that the estimation is noisy and inaccurate because the
true subtended angle is under the smaller calibrated one.

3.5 Results with Active CurvACE sensor

3.5.1 Experimental Setup

In order to assess the algorithm in a real experimental setup, a text bench was created. We
used an Active CurvACE sensor mounted on a servomotor MKS DS92a+, placed in front of a
vertical bar. This bar was 25mm in diameter and painted grey. The color was chosen to have
a contrast around 70% with respect to the background, in order to stay in the linear slope of
the CurvACE response during the tracking of the object (see the �gure 1.17 to remember the
S-Shape). The bar is also mounted on an o�-centered shaft on a stepper motor. The distance
between the motor axis and the center of the bar is 82mm. The motor is able to do very small
step 0.45◦ and a maximal speed of 270◦.s−1.
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Figure 3.6: a) Experimental setup showing the Active CurvACE sensor placed in front
of the rotating vertical bar. The bar can be moved and place at di�erent
distance from the motor axis to change the variation of the subtended and
orientation angles. The distance between the motor and therefore the bar,
and the visual sensor can be adjusted on the rail. b) Zoom on the Active
CurvACE sensor with its stepper motor mounted on a servomotor.

3.5.2 Calibration

The calibration process was realized by making 2 rotations of the eye placed in front of the bar,
back and forth. The bar was displaced on the rail to get several subtended angle measurement.
As each pair of photosensors are not exactly identical, the identi�cation of the response must
be done for each, as shown in �gure 3.7a and b). Compared to the theoretical value obtained
in simulation (see �gure 3.2), it can be seen that the middle part is more linear, even if the S-
curve can be observed. However, with these 8 di�erent subtended angles, it appeared that some
characteristics are crossing each other and creating a singularity. Indeed at these particular
points, it is not possible to distinguish the subtended angle. Moreover, it makes the response
non-monotonous according to the variation of the subtended angle. A potential explanation of
this phenomenon is that the bar is too small and the signal generated is not good enough, which
altered the response, and that is why the small angle were removed from the calibration data.
The results used are seen in �gure 3.7c and d, for 2 di�erent pairs of photosensors.

3.5.3 Localization performance

After the calibration, another tests was made to assess the precision of the algorithm. The bar
used was the same (i.e. 24mm) but the distances tested were di�erent. It could be seen that
the orientation measurements are close to the theoretical value. The error is always bounded in
the interval [−1; 1]. The results are also slightly di�erent according to the movement's direction.
This is mainly due to the delay in the �ltering processing. However, the measurements of the
subtended angle were not as good. Indeed, the precision seems usually good, except for the sixth
pair when α is small. Moreover, the accuracy could be di�erent between the pairs of photosensors
used.

Figure 3.9 shows that for di�erent ambient light conditions, the orientation measurement is
quite accurate with a mean error of less than 1◦. However, the subtended angle measurement is
not as robust to the light variations. The left side was usually more robust to the perturbation
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Figure 3.7: a and b) are the full calibration of 2 di�erent pairs of photosensors. Each
color corresponds to the calibrated subtended angle. It can be seen that
the variation of the slope is not identical to the results obtained in the
simulation, especially for the middle part which is less curved (see �gure
3.2). One main problem which appeared in those characteristics is that
they sometimes cross each other. It would be a problem in the resolution
because it makes the whole function not monotonous according to the
subtended angle. c and d) are the only calibrated data used to avoid the
crossing of 2 characteristics, therefore, less subtended angle were used form
the initial calibration which reduced the measurable subtended angles.
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Figure 3.8: Localization performance for di�erent subtended angles, varying from 3.93◦

to 7.04◦. The experiment was made with one bar of 24mm width viewed
at di�erent distance. The sensor was rotating on its yaw axis to change
its orientation, once back and forth for each distance. The measurements
showed are made when one single couple (ψ, α) was found. a) Measure-
ments of the orientation of the bar ψ in the FOV. b) The orientation error
between the measurement and the ground truth. c) The measured sub-
tended angle α and the theoretical in thick line. All the data are plotted
according to the ground truth value. The black vertical lines depicts the
mean position where the central pair is selected to compute the ψ and α
values
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Figure 3.9: Localization performance with four di�erent ambient light intensities, vary-
ing over one decade. The sensor is at a distance of 255mm of a 24mm wide
bar. a) Estimation of the orientation of the bar ψ in the FOV. b) Orienta-
tion error compared to the theoretical values with standard deviation for a
5s steady measurements, without the two outliers. c) α estimation of the
bar's subtended angle with the standard deviation.

than the right one. The results are also dependent on the pairs used for the computation. As
the visual environment was the same as the one used for the calibration, it is perhaps due to a
shadow that appeared behind the bar that had an in�uence on the measurement.

3.5.4 Tracking performance

It has been shown in the previous section that a measurement of the bar position can be done
with this algorithm. From the experiments made, it was noticed that the measurements are more
robust when it is close to the center of a photodiode's pair. In this situation, whatever the bar
width, the Smid value should be equal to 0. Therefore, the neighboring pairs are providing a
value, enabling the deduction of the subtended angle.

We wanted to test if the use of a closed loop control based on the orientation of the bar
could be possible and include a distance measurement as well. As presented in �gure 3.6, the
bar is placed on an o�-centered shaft and is describing a circular trajectory when the motor is
activated. The speed can be adjusted.

The results of the tracking of the bar is provided in �gure 3.10. It is shown that the eye
follows the bar quite well but the distance estimation is not as accurate. The errors seen in the
section 3.5.3 have an impact on the measurement. Due to the delay in the measurement, the
controller cannot ensure that the bar is kept in the middle of a pair. Indeed, the angular position
error is higher than one degree. Moreover, when the tracking error is close to 0, the subtended
angle estimation is not always accurate (see �gure in appendix C). Therefore, providing a reliable
measurement is not only a matter of the area. It can be also noticed that the subtended angle
measurement is the worst when it changes rapidly in the active CurvACE FOV. The speed of
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Figure 3.10: a) Estimation of the orientation of the bar relative to the eye. The green
curve is the theoretical position of the bar calculated from the stepper
motor command and the distance to the sensor. The blue curve is the po-
sition setpoint given to the servomotor and in red is the addition the same
setpoint and the measured position provided by the sensor. b) Error of
the estimated orientation and error of the eye orientation, both compared
to the theoretical value, in red and blue respectively. c) Measurement of
the subtended angle α of the bar in the FOV compared to the theoret-
ical value, in blue and green respectively. d) Distance estimation from
the subtended angle measurement compared the the theoretical value, in
blue and green respectively.

the target is therefore a limitation in the processing. It will be later seen (see section 5.3) that
the light adaptation has some drawbacks when it comes to contrasts at high speed.

3.6 Conclusion

The use of a Look-Up Table seems to be a good solution to provide more linearity and information
when it comes to localize a bar with an active eye. However, the calibration process should be
done carefully in a situation similar to the one where the future measurements will occur. Indeed,
the visual environment and the light intensity should not be too di�erent from the calibration
ones. If a shadow appears at the back of the bar, it can modify the sensor response and see a
larger bar than it is in actuality. Moreover, if the contrast on the left and on the right of the bar
is di�erent, it leads to an asymmetry of the pair's characteristic response. If this was the case
during the calibration, it can be taken into account, but it can lead to measurement errors C.2.

The calibration process can be noisy and not provide monotonous characteristics which is the
condition to obtain bijective functions fl(ψ, α), fm(ψ, α) and fr(ψ, α). These results should be
checked before any further computations. It should be also highlighted that the fm(ψ, α) function
is quasi linear in the experimental calibration compared to the various response according to the
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subtended angle obtained in simulation. It explains mostly the performance on the angular
position measurement. The sensitivity and the quality of the sensor are also important in order
to have reproducible measurements to �t to the calibration maps.

Another di�culty is that the speeds of the contrasts in the FOV have an impact on the de-
modulation and therefore the response. It could lead to identify another couple (ψ, α) compared
to a steady measurement, at the same position and conditions.

To summarize, in a completely controlled visual environment and with a sensitive sensor, the
proposed algorithm can provide good results. For some applications where the ambient light is
known and constant, a sensor other than CurvACE can provide good results. In this case, the
use of a vibrating sensor could be questioned, in regards to the work of Luke et al. [Luke et al.,
2012].
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CHAPTER 4. AN ALTERNATIVE EDGE LOCALIZATION: APPLICATION TO TARGET
TRACKING

4.1 Summary

The previous chapter shows that localizing a small target is a di�cult challenge with a compound
eye with a coarse resolution. The localization of edges over a wide �eld of view with the VODKA
algorithm requires a calibration process in order to have a linear output. The response of each pair
should be assess and the o�set with its neighbors need to be identi�ed as well in order to ensure
smooth measurement over the whole FOV. This chapter presents a new visual algorithm using 3
photosensors in order to localize an edge with precision without calibration. It is inspired from
the Heiligenberg works on the electric �sh [Heiligenberg, 1987], which compute a linear output
with an array of sensor with Gaussian sensitivity as input. An application to target tracking was
made to demonstrate its performance. The task is to follow a known cylinder by localizing the
edges of both sides. These measurements enable to know the orientation and the distance of the
target.

4.2 Introduction

The work on the subtended angle rose the following question. Does the VODKA algorithm really
provide the best solution in the localization of a contrast and a bar? In the case of a contrasting
edge, the response of the algorithm is well described by an invert tangent function. But for the
bar, it is still not very well mathematically described and directly usable [Kerhuel, 2009]. The
experiment made by Augustin Manecy [Manecy et al., 2016] in localizing a cross shows that with
a knowledge of the height and a complex calibration, a look up table could provide a localization
of a bar with a great linearity and resolution, though the distance to the bar should be known.
His experiment shows also that its calibration is robust with respect to some height variations.

The work of R. Juston [Juston, 2013] with the selection of the largest detected contrasts,
enabled to track a moving target over a textured pattern [Colonnier et al., 2015a] (work also
presented in in chapter 2). But the target should be wide enough in order to have a su�cient
number of good contrasts. It is a �rst step but could not really be used in pursuit task or obstacle
avoidance, in the case of frontal objects, because the distance to objects is also considered known.

The previous chapter shows that it is possible to have a relatively reliable localization of
a bar. But the estimation of its distance is really the challenge for small bar. Investigations
are still needed for the localization of this kind of target. In this chapter, it was chosen to
localize a wider target to reduce the challenge. We tried to change the localization algorithm
to increase robustness and avoiding the need of calibration and identi�cation process, even in
the edge case. Moreover, the idea here is to avoid the drift observed during the hand tracking
experiment in [Colonnier et al., 2015a], by selecting fewer contrasts.

The reading of the Heiligenberg's work was very inspiring to achieve this goal and we tried to
go further in this direction by applying his model to the visual localization of an edge. Moreover,
with 2 edges su�ciently separated from each other, it becomes possible to estimate the subtended
angle of an object and thus to estimate its distance and maintain automatically a constant
distance to the target.
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4.3 Using the weighted sum process introduced by Heiligenberg

4.3.1 About the Heiligenberg algorithm

A - Presentation

During his study on the electric �sh Eigenmannia, Heiligenberg makes the observation that
an individual neuron had a general response and do not reveal the outside situation entirely.
However, having a large amount of these neurons mapped together can provide an information
about the stimulus with a better resolution than the one provided by the array itself [Heiligenberg,
1987]. It reveals a hyperacuity [Westheimer, 1981]. Therefore, in the same paper, he provided a
model which fuses all the output of the receptive �elds into one single output. His calculation
is based on the hypothesis that each receptive �eld have a Gaussian sensibility noted fk(x, d)

according to the stimuli position and de�ned as follows:

fk(x, d) = e−(x−δ·k
d

)2
(4.1)

fk(x, d) describes mathematically the receptive �eld response to a stimuli according to its spa-
tial position, where δ the spacing between receptors, d the standard deviation of the Gaussian
function.

If the hypothesis of a Gaussian sensibility is veri�ed and the standard deviation of the Gaus-
sian function is su�ciently large compared to the space between receptors, the sum G(x, d) of
all the Gaussian functions weighted with their rank number in the array is approximately linear,
expressed in equation (4.2) and shown in �gure 4.1. To ensure a relative linearity error under 5%,
the parameter d de�ning the Gaussian function should be greater than 7.16, when the spacing
δ = 10. It should be highlighted that this value is purely theoretical and was computed without
any noise, neither on the response and nor on the position of each receptive �eld.

G(x, d) =

Nb∑
k=−Nb

k · fk(x, d) (4.2)

where Nb is the number of receptive �elds taken into account in the computation on both left
and right side of the center position chosen.

Baldi and Heiligenberg observed the following paradox: "the wider the tuning curves, i.e.
the less precise the single units, the more robust and precise is the overall computation" ( [Baldi
and Heiligenberg, 1988]). This is a key point but it does not take into account the noise in the
measurement or the quanti�cation problem. Indeed, the change between 2 positions (in other
term, the derivative) should be su�ciently large to be able to detect the change and also to
distinguish this change from the noise. Therefore, a best compromise should be found. This is
also mentioned in [Heiligenberg, 1987] with the fact that a higher standard deviation value does
not improve the resolution. It has a constant resolution for d between 10 and 200, but decrease
for higher d values.
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Figure 4.1: a) Simulated array of 100 receptor cells with featuring periodic Gaussian
receptive �elds for d = 5 and δ = 10. b) Weighted sum calculated for
4 arrays with di�erent standard deviations. It is clearly seen that with a
large value of d, the function G is very close to a linear function. (modi�ed
from [Heiligenberg, 1987])

B - The mathematical proof

As previously proved by Baldi and Heiligenberg [Baldi and Heiligenberg, 1988], the function
G(x, d) could be approximated by a linear function h(x, d) =

√
π · d ·x in the case of δ = 1. This

result could be extended to h(x, d) =
√
π · d

δ2 · x.

Remark 2 If for a function f1k(X,A) = e−(
(X−k)2

A
), the linear approximation is h1(x,A) =√

πA ·X. Then, by changing the variables X = x
δ and A =

(
d
δ

)2
, the result could be extended to

h2(x, d) =
√
π · d

δ2 · x

Although the function is never monotone, in the case of a �nite number of element, the error
| ε | is crudely bounded to:

| ε |6 2e
−c2

2

1− e−
c
2
d

(4.3)

if the function G(x, d) take in account only the response of c · d sensors on each side of x, i.e.:

G(x, d) =

x+c·d∑
k=x−c·d

k · fk(x, d) (4.4)

For example, with an array of 1200 sensors, for d = 20 and c = 5, the error is under 10−4

76



4.3. USING THE WEIGHTED SUM PROCESS INTRODUCED BY HEILIGENBERG

in the case of x ∈]100, 1100[ with δ = 1. This means also that 200 sensors are used for the
localization calculation.

4.3.2 Adaptation to visual processing algorithms

Heiligenberg suggested its model for the electric �sh. But other animals have similar sensitivity
for other sensory cues. Like it has been shown previously in section 1.2.2, the �y has a Gaussian
Angular Sensitivity Function (ASF) for each ommatidium. Therefore, the same principle can be
applied to vision.

As in the �y's eye, the parameters used to described the layout of the eye are the interom-
matidial angle ∆ϕ and the angle at the half height of the ASF ∆ρ also called acceptance angle.
At this step, a mathematical equivalence to the previous notation is required. It should be high-
lighted that the visual spatial response to an edge of the CurvACE sensor with the vibration is
Gaussian according to its position.

Adding a tremor on the visual sensor is an advantage in the visual processing, as it makes
the sensor the robust to the light level changes and more sensitive to contrasts thanks to the
high-pass �ltering [Kerhuel, 2009, Juston, 2013]. In the case of vision, the vibration is needed
because of the adaptation to the illuminance and because of the high-pass �ltering step. The
neural response of a �y's ommatidia shows that its signal is high-pass �ltered (as seen in section
1.2.2). Such response results from a movement of a contrast, the periodic vibration applied to the
sensor creates such movement. Indeed, even if the sensor and the target are steady, a scanning
movement of the sensor generates variation of the photosensor signals. In the following section,
this response will be shown to be Gaussian according to the position of an edge, it will be called
the "Edge receptive �eld". Therefore, the Heiligenberg algorithm could be applied.

A - Response of the Photosensors

Let consider that the ASF of the photosensors (which combine the lens and the photodiode) can
be modeled by a 2D Gaussian function:

S(ψ, θ) = K · exp

(
−4 ln 2

∆ρ2
(ψ2 + θ2)

)
(4.5)

where K is the amplitude, ψ, the azimuth and θ the pitch.

In order to have the volume of the 2D Gaussian function equal to one, the value of K should
be:

K =
4 ln(2)

π∆ρ2 (4.6)

Thus, the photosensor response could be written as follows:

Ph(ψ, θ) =

∞∫
−∞

∞∫
−∞

I(p, g).S(p, g)dp.dg (4.7)

where I(p, g) is the function of the light intensity received by the photosensor under an horizontal
angle p and a vertical angle g.
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Hence:

Ph(ψ, θ) = K

∞∫
−∞

∞∫
−∞

I(p, g). exp

(
−4 ln 2

∆ρ2
(p2 + g2)

)
dp.dg (4.8)

B - Hypothesis of one dimension only

If the visual scene is considered as one dimension, it means the light intensity from an azimuth
is constant whatever the pitch. It is supposed that all the elements in the FOV are in�nite in
height.

This implies I(ψ, θ) = I(ψ). Therefore, the equation 4.8 becomes:
Ph(ψ, θ) = K

+∞∫
−∞

I(p). exp

(
−4 ln 2

∆ρ2
p2

)
dp

+∞∫
−∞

exp

(
−4 ln 2

∆ρ2
g2

)
dg

K =
4 ln(2)

π∆ρ2

(4.9)

But knowing that:

+∞∫
−∞

exp

(
−4 ln 2

∆ρ2
t2
)
dt =

0∫
−∞

exp
(
−η2

)
dη +

∞∫
0

exp
(
−η2

)
dη

where η =
2
√

ln 2

∆ρ
t

= 2.

+∞∫
0

exp
(
−η2

)
dη

=
√
π (erf(+∞)− erf(0))

=
√
π

(4.10)

Then: 
Ph(ψ) = K

√
π

+∞∫
−∞

I(p). exp

(
−4 ln 2

∆ρ2
p2

)
dp

K =
4 ln(2)

∆ρ2π

(4.11)

C - With an Edge in the Field of View

Mathematically, the function I expressing the light intensity, in the case of one dimension with
only an edge in the �eld of view can be expressed as follows (as seen in equation (2.3)):

I(ψ) =

I1 for ψ < ψe

I2 for ψ > ψe
(4.12)

where ψe is the angular position of the edge in the �eld of view.
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In this particular case, the photosensor response becomes:
Ph(ψ) = K

√
π.

I1

ψ−ψe∫
−∞

exp

(
−4 ln 2

∆ρ2
p2

)
dp+ I2

+∞∫
ψ−ψe

exp

(
−4 ln 2

∆ρ2
p2

)
dp


K =

4 ln(2)

∆ρ2π

(4.13)

Knowing that:

1√
2π

x∫
−∞

exp

(
− t

2

2

)
dt =

1

2
·
(
erf

(
x√
2

)
+ 1

)
(4.14)

where erf is the so-called error function.

and assuming the equivalence t = 2
√

2 ln 2
∆ρ p , we have:


Ph(ψ) = K2.

[
I1.

(
1 + erf

(
2
√

ln(2)

∆ρ
.(ψ − ψe)

))
+ I2.

(
1− erf

(
2
√

ln(2)

∆ρ
.(ψ − ψe)

))]

K2 = K
√
π

√
2π

2
· ∆ρ

2
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As it can be noticed in equation (4.16), the addition of both light intensity, I1 and I2, is
multiplied to the whole response. It represents the amount of light received by the sensor and
its e�ect is seen as a linear response relative to the light in the case of a linear sensor. In the
case of an adaptive one and in steady state situation, it is either completely canceled [Mafrica
et al., 2015] or very reduced in the case of CurvACE for example (see section 1.3.4 and especially
�gure 1.17). The Michelson contrast, de�ned as I1−I2

I1+I2
, appears also in this equation. As it is

multiplied by the sum of I1 and I2, it shows that the response is increased for identical contrast
when light increased. This is highlighted in the experiment presented in �gure 1.16 of section
1.3.4.

D - Modeling the photosensor response after adding tremor and demodulation

process

As we are working with a sensor that can adapt to the ambient illuminance, it can be seen as a
high-pass �lter (see [Viollet et al., 2014] for the bode diagram of the CurvACE sensor response).
But as the steady state response still does vary slightly according to illuminance (see �gure 1.17),
in the signal processing, a high-pass �lter is also added to have a constant response relative to
illuminance. It is included in the peak �lter, as seen in �gure 4.6

Considering that the high-pass �lter of the demodulation process acts as a temporal derivative
(hypothesis already used in [Kerhuel, 2009]), the photosensor response is:
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
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If a tremor ψmod is imposed to the photosensor, then, its angular position can be noted:

ψ(t) = ψmod(t) + ψc(t) (4.18)

with ψc the mean angular position of the photosensor in the absolute frame. So, when ψc = ψe,
the photosensor is in front of the edge.

First, as in our case, the tremor is added mechanically with an eccentric shaft, the modulation
can be considered as sinusoidal noted ψmod = A sin(2πft). Therefore, the angular position of
the photosensor can be noted:

ψ(t) = A sin(2πft) + ψc(t) (4.19)

where ψc is the mean angular position of the photosensor in the absolute frame. So, when
ψc = ψe, the photosensor is in front of the edge. A and f are the amplitude and the frequency
of the scanning, respectively.

The derivative of the angular position is:

dψ(t)

dt
= A · 2πf cos(2πft) (4.20)

In the case of the demodulation process [Kerhuel et al., 2012], only the envelop is kept. It
should be highlighted that this processing is accurate only under the assumption that neither
the sensor nor the environment does move during a period of scanning.

Finally, the response of the demodulated signal could be expressed as follows:
PhD(ψ(t)) = Ph′(ψ(t)) = K3 · (I1 − I2) ·A · 2πf · exp
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(4.21)

The equation (4.21) shows that the faster the modulation is, the larger is the amplitude of the
response. Increasing both the frequency and the amplitude lead to an increase of the rotational
speed of the eye. It also highlights that the response of a demodulated signal is therefore a
Gaussian response (as it will be observed in �gure 4.6) and the Weighted Sum computation can
therefore be applied.

Remark 3 The demodulated signal of a photosensor submitted to a periodic vibration seeing

an edge in its FOV (also later called the "Edge receptive �eld") is depending on the amplitude

of vibration. Figure 4.2 displays this dependency. It shows that when the amplitude A of the

vibration is less or equal to the half of ∆ρ
2 , the response is a Gaussian function with a Full Width
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at Half Maximum (noted d) value similar to the initial one, i.e. here 4.2◦ (see table 4.1), but

with di�erent maximum values. For an amplitude of vibration higher than ∆ρ
2 , the Gaussian

approximation is not completely maintained and the shape changed. It is due to the fact that

the edge is not any more in the FOV of the photosensor for some positions, so the modulated

signals is constant at these positions. It should be highlighted that doing the assumption that the

output of the modulated signal has a d value equal to ∆ρ, is the worst case that could happen.

For an amplitude under ∆ρ
2 , d is near ∆ρ and higher for higher amplitude. The only remaining

requirement is to have the closest approximation as possible. Therefore, the best is to have a

scanning amplitude between ∆ρ
2 and ∆ρ. The simulated e�ect of the vibration amplitude on the

NWS calculation is described in Appendice D.1.
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Figure 4.2: Simulated photosensor responses according to the position of an edge for
di�erent amplitudes of vibration. For the simulation, the value of ∆ρ is
constant and equal to 4.2◦. In continuous line, the simulated response and
in dashed line, the Gaussian approximation. The legend is the amplitude
value A (referenced in equation (4.19)).

Table 4.1: Estimation of the Full Width at Half Maximum of the "Edge receptive �eld"
according to the scanning amplitude calculated from the data of �gure 4.2

Vibration Amplitude A [◦] d value [◦] Coe�cient of Determination R2

0.525 4.86 0.73
1.05 4.63 0.94
1.575 4.81 0.97
2.1 5.14 0.98
4.2 7.24 0.99
6.3 9.98 0.98
8.4 12.93 0.97
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E - The photosensor demodulated signals as inputs for the Weighted Sum algo-

rithm

Heiligenberg Calculation To use the Weighted Sum algorithm, it is required to have multiple
photosensors. In this case, each are separated with an angle of ∆ϕ. Therefore, the response of
each photosensor demodulated signal is:


PhDi(ψ(t)) = K3 · (I1 − I2) ·A · 2πf · exp

−(2
√

ln(2)

∆ρ
(ψ + i.∆ϕ− ψe)

)2


K3 =
4 ln 2

∆ρ
√
π

(4.22)

From the de�nition, ∆ρ is the width at half maximum of the gaussian function. It means
that d and δ from the equation (4.1) are equal to ∆ρ

2
√

ln(2)
and ∆ϕ, respectively. To make PhDi

look closer to the function fk(x, d), let Z be equal to ψ − ψe, the equation (4.22) becomes:


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)

K3 =
4 ln 2
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√
π

(4.23)

With this expression, it is proved that the response of a scanning photosensors' array in front
of an edge have a Gaussian response. The signal amplitude is varying with the contrast and the
scanning function. It can therefore be used as an input of a Weighted Sum algorithm to localize
edges.

4.4 Application to the tracking of a cylindrical target

The choice of a cylinder was interesting because the image formed in the pursuer FOV does not
change with rotation. As our algorithm localizes edges, only the two edges of the cylinder are
tracked. They should have a su�cient contrast with respect to the background, as seen in �gure
4.3. The localization of the 2 edges can lead to the estimation of the orientation and distance of
the target relative to the pursuer as it will be seen in the following section.
The cylinder is also contrasted with a black and green pattern to show the robustness of the
edges localization. It could be uniform with no change in the processing. The only requirement
is to have a higher spatial frequency (cycle.deg−1) than the spatial cuto� frequency of the "pixels
+ optic" assembly. The use of such pattern highlights also that our localization process does
not rely on optic �ow, because there is no change in the visual response during a rotation of the
target.
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Field of view of 
CurvACE

Edges to follow

Figure 4.3: Experimental setup from the pursuer point of view. It shows the two edges
of the target with the visual sensor Field of View

4.5 Article 2: Visual Micro-Scanning Makes a Robot Pursuer Ca-

pable of Robust Target Following Behavior with Hyperacuity

Description and Contribution

The material presented in this section is close to submission in a journal [Colonnier et al.,
2017]. The idea of the visual algorithm comes from a discussion with S. Viollet about the
Heiligenberg's observation. I pointed out that only one edge should be in the Visual Field to
have an accurate response. I made and tested the solution of using only 3 photosensors to avoid
this drawback. It was observed that the slope changed according to the lighting conditions and
S. Viollet suggested the idea to divide by the Sum to balance this problem. Then, I made the
mathematical demonstration to �nd the appropriate scaling. S. Ramirez-Martinez designed the
control law of the robot supervised by F. Ru�er, S. Viollet and myself. I managed all the
experiments. Finally, I wrote the paper with the help of S. Viollet and F. Ru�er.

4.5.1 abstract

Here we present a novel bio-inspired visual processing system, which enables a robot to locate
and follow a target, using an arti�cial compound eye called CurvACE. In the present study, only
23 pixels were used, representing a wide Field of View of (around 97◦). This arti�cial compound
eye actively scanned the visual environment at an imposed frequency (50Hz) with an angular
scanning amplitude of a few degrees (4.2◦) and succeeded in locating a textured cylindrical
target with hyperacuity, i.e., with greater accuracy than that normally imposed by the pixel
pitch. By placing this small, lightweight visual scanning sensor on a Mecanum-wheeled mobile
robot named ACEbot, we established that the robotic pursuer was able to follow a target at a
constant distance with a high level of repeatability. Thanks to the CurvACE auto-adaptive pixels,
ACEbot consistently achieved similar pursuit performances under various lighting conditions.
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4.5.2 Introduction

In this study, we focused on a pursuer scenario in which a holonomic mobile robot (the pursuer)
tracks a mobile target, maintaining its visual contact with the target at all times and keeping a
constant distance. It was assumed that the pursuer knows the size of the target, and that the
speeds of the pursuer and target are bounded. Previous authors have tackled target following
challenges using an omni-directional camera without any communication between the pursuer
and the target, and by planning a suitable trajectory for the pursuer [Mariottini et al., 2009,Das
et al., 2002, Cowan et al., 2003]. Follow-the-leader scenarios can be said to be a particular
case of target tracking, as the leader is identi�ed and can provide the follower(s) with relevant
information. Some authors of robotic studies have used infrared (IR) beacons [Roberts et al.,
2012,Wenzel et al., 2012, Faessler et al., 2014, Shishika et al., 2015], visual pattern recognition
processes [Saska, 2015] based on the open-source code Whycon [Nitsche et al., 2015], and acoustic
signals either alone [Basiri et al., 2016] or combined with radio signals to estimate the distance
from a moving target [Maxim et al., 2008]. The problem of target tracking has been previously
addressed in the �eld of computer vision (see [Wu et al., 2013] for a review). Bio-inspired
approaches have involved the use of either an Event-based camera to track a moving target
with a mobile robot [Liu et al., 2016] or insect-based Elementary Small Target Motion Detectors
(ESTMDs) [Bagheri et al., 2015]. Many animals are capable of performing highly e�cient target
tracking tasks [Land, 1992]. Small insects are capable of catching prey or mates, for example,
in order to survive in their ecological environment: the house�y (Fannia canicularis) tracks
the female by consistently �ying towards it, making no assumptions about its quarry's future
position [Land and Collett, 1974]. Likewise, Syritta pipiens L. hover�ies follow their potential
mates, keeping the same distance away before trying to catch them. Depending on the position
of the female in its �eld of view, the male will perform either body saccades and sway movements
when the target is located on the side, or adopt a smooth pursuit strategy [Collett and Land,
1975] when she is upfront. The male Lucilia can also follow its target for a while before deciding
whether she will be a suitable mate. Based on �eld observations, �ies seem to use the size of
their target in their Field-Of-View (FOV) and hold its position on the frontal midline of the
head [Boeddeker et al., 2003].

In this study, we used a bio-inspired arti�cial compound eye called CurvACE featuring an
optical resolution of only a few degrees imposed by the angle between two adjacent ommatidia
(photoreceptor + lenslet) [Floreano et al., 2013]. The relatively coarse optical resolution and
its low sensitivity (see [Viollet et al., 2014], �g. 15) was greatly improved by applying small
periodic mechanical vibrations to the whole eye, which resulted in a visual micro-scanning of the
environment. Many visual sensors based on active retinal micro-movements (see [Viollet, 2014]
for a review) have been used for various robotic purposes, such as enhancing edge detection
[Prokopowicz and Cooper, 1995,Hongler et al., 2003] and improving obstacle avoidance [Mura
and Shimoyama, 1998]. However, few studies have focused so far on the use of retinal vibrations
to enhance the visual acuity of arti�cial sensors. Recent studies featuring hyperacuity have
focused on the processing of the amplitude of the photosensor's output signals to locate an
edge/bar using only 2 pixels [Kerhuel et al., 2012], to locate and track a white cross using
complex calibration process [Manecy et al., 2016] or to measure robot 1D egomotion [Colonnier
et al., 2015a]. The visual sensor called active CurvACE [Colonnier et al., 2015a] (i.e. the scanning
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version of the CurvACE sensor) was developed to locate features with hyperacuity, i.e. "with
a greater accuracy than that corresponding to the resolution imposed by the photoreceptor's
limited pitch" as de�ned by [Westheimer, 1981]. An eccentric mechanism was used to impose
bio-inspired micro-scanning movements on our arti�cial eye [Juston and Viollet, 2012,Colonnier
et al., 2015a]. The Active CurvACE sensor [Colonnier et al., 2015a] is characterized by 4 speci�c
bio-inspired principles:

� local light adaptation at the pixel level,

� a similar inter-ommatidial angle ∆ϕ to that observed from the fruit�y's eye,

� a Gaussian shaped angular sensitivity function in the case of each arti�cial ommatidium,

� a micro-scanning movement with its visual signal processing providing hyperacuity.

Here, we introduced a new fusion algorithm which greatly improved the linearity of the
angular position of the target placed in the FOV of the active CurvACE sensor. This new
linear characteristic was used to make a pursuer robot follow a target. We then established that
the pursuer equipped with a bio-inspired non-emissive visual sensor was capable of achieving
smooth pursuit when following a mobile cylindrical target at a constant distance. Section 4.5.3
presents the experimental setup and the objectives. Section 4.5.4 describes the bio-inspired
visual fusion method used to locate the cylindrical target over a large angular position range
within the horizontal FOV of active CurvACE. Section 4.5.5 describes the control system and
the kinematics of the pursuer robot. Section 4.5.6 shows the highly reproducible results obtained
under 3 di�erent lighting conditions in the �pursuer scenario" framework. Section 4.5.7 draws
some conclusions and suggests some perspectives.

4.5.3 Experimental setup and objectives

10cm

θLeft

θRight

εr
α

Target

Deye

Rcyl

xrobot

yrobot

ytarget

xtargeta) b)

Figure 4.4: a) An experimental situation where the pursuer (i.e., the yellow robot
ACEbot) is following the target (a textured cylinder mounted on a moving
wheeled rover) at a constant distance. Thanks to its hyperacute visual sen-
sor, the robot ACEbot is able to lock its heading onto the target and keep
a constant distance from the target. b) Scheme of the various parameters
and angles used in the control strategy implemented here.
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Figure 4.5: a) Picture of the ACEbot's visual sensor called Active CurvACE and the
photodiode used for the illuminance measurements. b) Diagram of the
mechanical system, the eccentric shaft is used with a roller bearing to
limit the wear in the slotted hole. This active CurvACE assembling is
very compact (40× 27× 15mm) and light (12.5 grams).

The pursuer equipped with a bio-inspired visual sensor consisting of only 23 arti�cial om-
matidia (i.e., one pixel �tted with a tiny lens also called a photosensor in this paper) was able
to perform smooth pursuit when following another mobile robot (the cylindrical target) at a
constant distance. The FOV covered by the 23 photosensors was about 97◦. As shown in �gure
4.4a, the following two robots were used to test the pursuer scenario:

� The pursuer, named ACEbot, which stands for "Active Compound Eye on a robot", was
a yellow rover equipped with an active CurvACE visual sensor [Floreano et al., 2013,
Colonnier et al., 2015a] and Mecanum wheels (see �gures 4.4 and 4.11).

� The target was a non-holonomic rover carrying a textured cylinder (see �gure 4.4a). The
two contrasting edges of the cylinder with respect to the background were the two visual
cues used by the sighted pursuer to track the target's movement.

As depicted in �gure 4.4b, the following notation is used throughout this paper:

� θLeft, θRight are the angular position of each edge in the eye's FOV,

� εr is the measured retinal error, i.e. the position of the target in the eye's FOV,

� α is the measured subtended angle, giving the size of the target in the FOV,

� Rcyl is the radius of the cylinder.

4.5.4 From electric �shes' receptive �elds to hyperacute visual target local-

ization

Heiligenberg [Heiligenberg, 1987] has established that the Weighted Sum (WS) of an array of
overlapped Gaussian receptive �elds in an electric �sh can result in a linear response. WS
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computations on an array of sensors with a Gaussian shaped response give an approximation of
a straight line (WS(x, σ) ≈

√
πσx, with WS de�ned in equation (4.34)). The validity of this

linear approximation was proved in [Baldi and Heiligenberg, 1988].

The same (slightly modi�ed) principle was used here for the �rst time in the context of bio-
inspired arti�cial vision, where it was applied to a group of three in-line adjacent pixels (called
a triplet) showing overlapped Gaussian-like responses of their "Edge receptive �eld" (see �gure
4.6)c, and showed that once the WS has been normalized, this system produces a reliable output
signal which can be used to locate an edge with great accuracy.

A - From modulated visual signals to Gaussian-like responses

Although the present visual sensor was based on the same mechanical principle as that described
in [Colonnier et al., 2015a], only a few processing steps were used in the current visual algorithm:
the principle of using a peak �lter with an absolute value and a low-pass �lter was still adopted
as in [Kerhuel et al., 2012], but the �lters were improved to increase their dynamic responses (see
�gure 4.6a). In addition, an envelope detector was added in order to �lter the signal without
increasing the delay. The main advantage of using this envelope detector rather than a classical
low-pass �lter [Colonnier et al., 2015a] is that it increases the cuto� frequency of the last low-pass
�lter (from 5 to 20Hz), thus increasing the bandwidth of the visual processing.

To test the responses of the visual processing algorithm, the arti�cial eye was rotated back
and forth in front of the target by activating the visual micro-scanning movements. As shown
in �gure 4.6c, the "Edge receptive �eld" of each pixel's output signal, denoted PhD, can be
approximated with a Gaussian-like function centered at the angular position of the contrasting
edge with respect to the eye (the gaze).

B - From Gaussian-like responses to angular position measurement within the

triplet's FOV

Normalized Weighted Sum Computation In the case of the present visual system, the
amplitude of the PhD signals depends on three main parameters: the ambient illuminance, the
contrast and the scanning frequency. The novel feature of our approach is that it makes the
visual sensor's output signal independent of these parameters by normalizing the WS by the
sum of the PhD signals. As shown in the Appendix 4.5.8A, the output of the normalized WS
(NWS = WS/S) is still linear and bounded. The hyperacuity of the NWS was also established
because the maximum error amounts theoretically to less than 7% of the spacing between the
receptive �elds. This makes it possible to measure the position of a contrasting edge. However,
only one edge at a time must be present in the FOV of the photosensors used for the computations
at a time. It is therefore best to use as few photosensors as possible. It was decided to use only
three neighboring photosensors, i.e. one triplet, in the NWS, because when an edge is in the
neighborhood of the center of the triplet's FOV (±∆ϕ

2 ), it contributes more than 99% to the
total Sum. The linearity error is less than 6.5% (see Appendix 4.5.8A).

To provide the pursuer with the angular position of one given edge, it is necessary to scale the
NWS value, depending on the spacing between each pixel. The mathematical expression for our
new algorithm applied to an array of pixels featuring Gaussian angular sensitivities separated by
an angle ∆ϕ can therefore be written as follows:
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Figure 4.6: a) The demodulation signal processing algorithm applied to the vi-
sual signals delivered by the vibrating arti�cial compound eye (Ψmod =
A sin(2π50t) where A ≈ ∆ϕ

2 ). Three Gaussian shaped optical angular sen-
sitivities of the Active CurvACE (de�ned by its acceptance angle ∆ρ) are
shown. The CurvACE readout circuit is in charge of digitizing each pixel's
output signal here at a sampling frequency of 500Hz. The subsequent
digital demodulation steps are performed using a peak �lter center at the
scanning frequency cascaded with an absolute value function connected to
a digital envelope detector and a low-pass �lter (6 order, cut-o� frequency
of 20 Hz). b) Scheme of the active CurvACE sensor in front of the tar-
get. c) Normalized Gaussian-like "Edge receptive �elds" (de�ned by their
standard deviation σ) of 3 vibrating photosensors after the demodulation
process during two back and forth rotations of Active CurvACE (vibration
turned ON) in front of left and right edges of cylindrical target.

NWS(n) = ∆ϕ ·

n+1∑
k=n−1

k · PhD(k)

n+1∑
k=n−1

PhD(k)

+ bias (4.24)

where PhD denotes the photosensors' demodulated signals and bias is a calibrated value used
to set the o�set.

Characterization of the visual sensor To test the responses of the hyperacute visual sensor
(i.e., the active CurvACE) depending on its orientation (denoted ψgaze) with respect to a textured
cylindrical target, the visual sensor was turned towards a �xed target (a textured cylinder 30 cm
in diameter, placed 91cm ahead) and rotated stepwise about the vertical axis via an accessory
position servo (not shown here) driven by a 0.1◦ staircase signal. The responses of each of the 21
NWS were monitored at each azimuthal orientation of the gaze ψgaze with respect to the target.
As shown in �gure 4.6, the various NWS were calculated by applying equation (4.24). Figure
4.7a gives the results of all the NWS calculations and shows the need for a selection process to
obtain the NWS of greatest interest, which will be used to locate the target.
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Figure 4.7: a) Normalized and scaled WS values of the 21 triplets as a function of the
visual sensor's gaze (ψgaze) with respect to the �xed cylindrical target. The
parts resulting from the selection process (see section C) are highlighted.
b) Measured angular position of each target's edge (left and right) versus
the visual sensor's gaze. Comparisons between the measured angular posi-
tions (red) and the ground truth values (green) based on a motion capture
system showed that the linearity error of the sensor amounted to only 5
percent. The resolution was as small as 0.78◦ with a signal-to-noise ratio
of 20.7dB.

C - Weighted Sum Selection : edge localization over a large angular position

range

As shown in �gure 4.7a, a selection process was required to obtain the NWS value nearest to the
real value. This process was performed using the following criteria:

SCriteria(i) = PhD(i− 1) + 2 · PhD(i) + PhD(i+ 1) (4.25)

The index value n corresponding to a given contrast is then updated as follows:

n = arg max
i∈[n−1,n+1]

SCriteria(i) (4.26)

The new triplet index n indicates the current NWS signals, de�ned for the cylinder edge mea-
surements as follows: {

θLeft = NWS(nLeft)

θRight = NWS(nRight)
(4.27)

This selection process was based on the assumption that the target is not moving faster than
∆ϕ between two successive sampling times. This means that an edge can only be located either
via the same selected NWS or via its nearest neighbor (n−1 or n+1). In this study, the sampling
frequency of the measurements was 500Hz. The selection process can be applied to any number
of edges to be followed (in the present case, two edges).

D - Application to Target localization

The two measured angular positions resulting from the selection process are denoted θLeft and
θRight.

This algorithm makes it possible to locate 2 contrasting edges at the same time if they are
separated by a su�ciently large angle, i.e. 2∆ϕ, in line with the hypothesis that only one contrast
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can be located at a time in the FOV of 3 photosensors. Assuming that these two edges belong
to the same target, it is therefore possible to calculate its orientation ε̄er and its subtended angle
ᾱ de�ned as follows: {

ε̄r = (θLeft + θRight)/2

ᾱ = θLeft − θRight
(4.28)

Table 4.2 sums up the Active CurvACE performances.

4.5.5 Nonlinear Control and Kinematic of the pursuer robot

The arti�cial eye was placed on a robot equipped with Mecanum wheels (see Appendix 4.5.8 for
details), which allows omnidirectional movements. The maximum speed that the robot was able
to reach was equal to 0.5m.s−1.

The control laws implemented onboard the pursuer were drawn up using the kinematic model
[Tsai et al., 2011,Viboonchaicheep et al., 2003]. The control strategy implemented was based on
a non-linear approach to control each degree of freedom and a bounded control strategy adapted
from [Guerrero-Castellanos et al., 2014] to control the 4-wheeled robot.

ACEbot

Wheel Speed 
Controller

Active
CurvACE

 Non-linear Control

εr*

εr

_ α
_

Frame 
Transformation 

(see eq. 4.29)

r1,2,3

Vx*,Vy*
ωz*Bounded 

Control 
(see eq. 4.32)

Linearization 
(see eq. 4.31)

e1,2,3
Kinematic 

Model
(see eq. 4.30)

ω*[1:4]

X^

+-

+-

Visual Algorithm

_
α = θE2 - θE1

_ θE1 + θE2εr = 2

-1
err Ψ*

X*1,2,3

1,2,3

Figure 4.8: ACEbot controls its distance to the target using visual cues (ε̄r, ᾱ) and
the 4 wheel speeds.

Figure 4.8 shows the ACEbot's control strategy. The setpoints X∗ are the desired position
of the robot in the target frame. As the target is cylindrical, it has the same shape when viewed
from all directions in the azimuthal plane. The robot's x direction in the local target reference
frame was therefore taken to be always co-linear with the pursuer-to-Target's direction, as shown
in �gure 4.4b. Therefore, the x reference is the distance requirement, which has to be negative.
The y reference in the target frame is null to ensure that ACEbot is aligned with the Target.
The heading angle ψ was controlled in the closed-loop mode so as to keep the retinal error εr
equal to zero.

The estimated state vector can be expressed as follows:

X̂1,2,3 =

 xrob

yrob

ψrob

 =

 − cos(ψ∗) ·
(
Rtarget
sin(ᾱ/2)

)
−Deye

0

−ψ∗

 (4.29)

where Deye is the distance from the eye to the ACEbot center. It can be noticed that −xrob
corresponds to the distance measurement (noted Dmeas in Table 4.2).

The kinematic model is the transfer matrix from the velocity of the robot's centre to the
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wheel speed: 
ω∗1
ω∗2
ω∗3
ω∗4

 =
1

Rw


1 −1 −(l + L)

1 1 (l + L)

1 1 −(l + L)

1 −1 (l + L)


 v∗x
v∗y
ω∗z

 (4.30)

where v∗x, v
∗
y and ω∗z are the robot speed control inputs. Rw, L, l are the wheel radius, the

wheelbase and the track width, respectively. The linearization is the transfer matrix from the
global frame, or in this case, the Target, to the ACEbot frame, which is expressed as follows:

v∗x = cos(ψrob) · r1 + sin(ψrob) · r2

v∗y = − sin(ψrob) · r1 + cos(ψrob) · r2

ω∗z = r3

(4.31)

where ri denotes the bounded control output signals. This transformation was also useful for
decoupling the control of each degree of freedom in the global frame.

Considering the notation ei = X∗i − X̂i, the ri are the results of the following calculation:

ri = σMi3

(
Ẋ∗i + σMi2

(
ai1ei + σMi1(ai2ei + ai1ai2

∫
ei)
))

(4.32)

where the saturation function is de�ned as:

σM (s) =

s, if | s |< M

sign(s) ·M, otherwise
(4.33)

The values aij and Mij are given in the Appendix 4.5.8B.

4.5.6 Experimental pursuit performances

A - Experimental setup

The Target robot was controlled either by a manual remote control system or via a feedback
loop, using a VICON Motion Capture System which can give the position of the robots at a
refresh rate of 500Hz with a precision of less than 1.5mm (see the Appendix B in [Manecy et al.,
2015]). ACEbot and the robotic Target were equipped with infrared (IR) LEDs used as active
markers for the VICON system to spot. The IR strobes of each VICON camera were disabled to
prevent any visual perturbations from occurring due to the strongly �ickering infrared lighting.

B - Ambient Light Variations

Figure 4.9a shows the trajectory of the Target in green and that of the ACEbot in yellow. The
positions of both robots are shown every 8s, and it can be seen that the ACEbot always kept close
to the Target, while keeping it in its line of sight. The dark blue triangle shows the measured
subtended angle.

In this experiment, the Target followed an imposed smooth trajectory with some small curves
and ACEbot, after detecting the Target, was able to follow it unfailingly.
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Figure 4.9: Three di�erent following trajectories under di�erent ambient light condi-
tions. a) The trajectories of the center of inertia of the target and the pur-
suer ACEbot are presented in green and orange, respectively. The robots
are drawn every 8s, with the full FOV of ACEbot in light blue, and the
measured subtended angle of the target in dark blue. b) The orientation
of the target in the FOV of ACEbot with the setpoint ε∗r in blue, the mea-
sured angle εr in red and the ground truth in green. c) The distance from
the target, the measured distance and the ground truth value in blue, red
and green, respectively. d) Dynamic responses of the light sensor shown in
�g. 4.5a, re�ecting the changes in the ambient lighting, which measured
100 Lux in 1 , 780 Lux in 2 and 1500 Lux in 3 . These responses show
the robustness of the visual processing system with respect to several light
levels.

As the photosensors in the arti�cial eye adapted fast to changes in the light level [Floreano
et al., 2013], this pursuit behavior was consistently repeated under the various ambient lighting
conditions tested. The tests of �gure 4.9 (and also in the video in the supplementary data),
were performed in a single experimental run, starting in the dark, where the target was detected
and followed up to the end of the arena before returning close to the starting-point. The light
was turned on when the target came to a stop. The pursuit was repeated and the blinds of the
robotic arena were �nally opened for the last pursuit. During this experiment, the target was
remotely controlled by hand, giving similar trajectories.

It can be seen from �gure 4.9 that the distance was accurately estimated and remained
constant, although slightly above the reference value. This error was due to the fact that the
ACEbot's speed is bounded and not large enough. The ACEbot's pursuit performances of the
whole run are summarized in the table 4.2.

C - Repeatability

To test the robustness of both the visual algorithm and the robot's control strategy, the target's
and pursuer's trajectories were repeated 20 times under the same lighting conditions (�g. 4.10).
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It is worth noting that the pursuer took the same trajectory and never lost visual contact with
the target. The standard deviation of both the target's and pursuer's trajectories was only 3cm.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
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Y
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 [m
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Figure 4.10: 20 recordings of target following tasks. The target's and pursuer's trajec-
tories are plotted in green and yellow, respectively. This pursuing episode
shows the excellent repeatability of the robot's ability to follow a target
moving along several similar paths. The ACEbot consistently produced
the same behavior, thus showing the high robustness of the visual pro-
cessing algorithm.

4.5.7 Conclusion

In this paper, it was established that only 23 pixels part of a vibrating arti�cial compound
eye was able to locate a robotic target with hyperacuity and to pursue it with great accuracy.
Compared to a previous study [Manecy et al., 2016], we obtained a similar linearity in the target
localization within a much larger visual range and without the need of a complex calibration
process. The robot's orientation and its distance from the mobile target were precisely estimated
under various lighting conditions. Table 4.2 gives the detailed results for the entire duration of the
tests provided in the supplemental video. The novel computationally lean, small, lightweight bio-
inspired visual sensor presented here is suitable for use in target following tasks. The limitations
of the present strategy concerned the existence of a su�ciently subtended angle of the Target
in the FOV (theoretically > 2∆ϕ) and the presence of a nearly uniform background or one
without any sharp contrasts. We plan to test ACEbot with several target's size and target's
visual characteristics as well as without any knowledge about its size. An improvement of the
pursuer dynamic responses could also be explored by providing the robot with information about
the target speed.

In the future, this active device could be embedded for example onboard a Micro-Aerial
Vehicle (MAV). However, in the case of free �ight, a second active Curvace or a 2D scanning would
be required to detect the elevation of the target. In the automotive framework, a non-emissive
optical sensor, like Active CurvACE, sensitive over a large angular position range and over a high
range of light level could also provide a suitable alternative for the classical ultrasonic sensors
and LIDARs which are being widely used these days in adaptive cruise control applications.
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Table 4.2: Active CurvACE and ACEbot performance summary

Active CurvACE characteristics
Static Optical parameters ∆ϕ = ∆ρ = 4.2◦

FOV 96.6◦

Scanning frequency 50Hz

Scanning angular amplitude A 2.1◦(≈ ∆ϕ
2 )

Sampling frequency 500Hz
Visual processing bandwidth 20Hz

Hyperacuity resolution 0.78◦ = 19% of ∆ϕ
Linearity 95% (R2 = 0.99)

Signal to Noise Ratio 20.7dB

Estimated Target localization using Active CurvACE
with respect to the Ground Truth (GT) (mean ± std)

Target ang. position ε̄r − εGT −0.62± 1.28◦

Subtended angle ᾱ− αGT −1.78± 1.49◦

Target distance Dmeas −DGT 3.1± 2.7cm

Closed-loop ACEbot pursuit accuracy
with respect to Ground Truth (GT) (mean ± std)

Target ang. position ε∗r − εGT −0.67± 2.63◦

Subtended angle αRef − αGT −2.40± 5.09◦

Target distance DRef −DGT 2.8± 7.9cm

4.5.8 Appendixes

A - Linear approximation and error estimation for the WS computation

The equation proposed by Heiligenberg [Heiligenberg, 1987] reads as follows:

WS(x, σ) =

∞∑
k=−∞

k · e−(x−k
σ

)2
(4.34)

as e−(x−k
σ

)2
describes a Gaussian function, where σ is the standard deviation.

Let S(x, σ) be de�ned as in this equation as follows:

S(x, σ) =

∞∑
k=−∞

e−(x−k
σ

)2
(4.35)

Let x = n + y as in [Baldi and Heiligenberg, 1988], with n ∈ Z and y ∈ [0, 1], which means
that WS(x, σ) = n · S(y, σ) +WS(y, σ)

It was established in [Baldi and Heiligenberg, 1988], that:
S(y, σ) =

√
πσ

(
1 + 2

∞∑
k=1

e−(σkπ)2
cos(2πky)

)

WS(y, σ) = yS(y, σ)− 2π
3
2σ3

∞∑
k=1

ke−(σkπ)2
sin(2πky)

(4.36)
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From the de�nition, y = x − n, which means that S(x, σ) = S(y, σ) because S is periodic
with a period of 1. The ratio of the weighted sum over the sum of the Gaussian functions is
equal to NWS = WS(x,σ)

S(x,σ) . Given that:

WS(x, σ) =
√
πσ · x

(
1 + 2

∞∑
k=1

e−σ
2k2π2

cos(2πky)

)

− 2πσ2√πσ
∞∑
k=1

k · e−σ2k2π2
sin(2πky)

(4.37)

it can be deduced that,

NWS = x− 2πσ2

∞∑
k=1

k · e−σ2k2π2
sin(2πky)

1 + 2
∞∑
k=1

e−σ2k2π2 cos(2πky)

(4.38)

The error ε (using NWS = x+ ε) can therefore be deduced as follows:

ε = −2πσ2

∞∑
k=1

k · e−σ2k2π2
sin(2πky)

1 + 2
∞∑
k=1

e−σ2k2π2 cos(2πky)

(4.39)

If ε is bounded, we establish here that NWS is similar to a linear function with a slope of 1.

From [Baldi and Heiligenberg, 1988], crude bounds can be computed for the series, if the
inequality

√
2 ln 2
2π ≤ σ is true:

∣∣∣∣∣
∞∑
k=1

e−σ
2k2π2

cos(2πky)

∣∣∣∣∣ ≤ e−σ
2π2

1− e−σ2π2∣∣∣∣∣
∞∑
k=1

k · e−σ2k2π2
sin(2πky)

∣∣∣∣∣ < e−σ
2π2

1− e−σ2π2

(4.40)

Thus, the absolute value of ε can be bounded as follows:

|ε| ≤ 2πσ2 e−σ
2π2

1− 3e−σ2π2 (4.41)

In the present case, if we adopt the assumption that ∆ρ = ∆ϕ, σ = 1

2
√

ln(2)
, which satis�es

the inequation
√

2 ln 2
2π ≤ σ, the error ε will be equal to 7% of the spacing between each pair of

photosensors. This value results from a crude mathematical error calculation, because one can
obtain an error of 6.5% numerically with only 3 Gaussian functions.

B - ACEbot control parameters

The values for each control parameter are equal to: a11 = 22.5, a12 = 0.0225, a21 = 22.5, a22 =

0.0225, a32 = 45.0, a33 = 0. These values make the trajectories very close to the linear region
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Batterie 3S

to host station
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Active 
CurvACE

Light sensor

Gumstix

Figure 4.11: Picture from above of the robot, showing the electronic hardware. The
Gumstix communicates with the ground station through Wi� as well as
with the Motor control board and with the Teensy through an UART bus.
Neither boards are visible on the picture as they are under the robot.

and guarantee the stability of the system. The limitsMij for i, j = 1, 2, 3 are described in (4.42).

M11 = 0.54 M21 = 0.675 M31 = 0.9360

M12 = 2.5515 M22 = 2.835 M32 = 5.256

M13 = 7.0425 M23 = 7.0425 M33 = 1.5

(4.42)

C - Information about the Robotic platform ACEbot

The product reference of the platform is "Nexus 4WD Mecanum wheel mobile robot kit 10015"
but the utlrasonic sensors are not used in the present application.

As regards the electronics, the main program was running on a Gumstix Overo board, which,
thanks to the RT-MaG toolbox, can be programmed directly from Matlab/Simulink [Manecy,
2014]. This Linux based Computer-On-Module (COM) was running the signal processing algo-
rithm for the 23 photosensors received from CurvACE through a synchronous serial bus (SPI).
It was also connected through UART to a Teensy board. The latter was in charge of the ac-
quisition of the photo-current sensor to record the ambient light level and to switch the stepper
motor in charge of the eye's periodic tremor on and o�. The wheel speed setpoints computed on
the Gumstix were transmitted through a serial bus (UART) to the Arduino-compatible motor
control board, which then controlled each wheel's speed with a PI controller. A WiFi connection
between the robot and the ground station was used to monitor the variables of interest during
the experiments and provided the rover with setpoints. The ACEbot robot was powered by a
3-cell lithium polymer battery.
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4.6 Adaptation of the Normalized Weighted Sum with the pho-

tosensor equation

If an array of photosensors is used as input in the Weighted Sum WS and the Sum S, thanks to
the equation (4.23), it can be written:



WS =

+Nb∑
k=−Nb

k · PhDk(ψ(t)) = K3 · (I1 − I2) ·A · 2πf
+Nb∑

k=−Nb

k · exp

(
−
(
Z + k.∆ϕ

d

)2
)

S =

+Nb∑
k=−Nb

PhDk(ψ(t)) = K3 · (I1 − I2) ·A · 2πf
+Nb∑

k=−Nb

exp

(
−
(
Z + k.∆ϕ

d

)2
)

K3 =
4 ln 2

∆ρ
√
π

(4.43)

The division of WS/S allows to cancel the dependencies on the contrast, the ambient light
and the active periodic vibration. However, it should be reminded that K3 · (I1 − I2) · A · 2πf
must be di�erent from 0. I1 6= I2 is true because a contrast should exist to be located. A · 2πf is
di�erent from 0 if the frequency and the amplitude are not null. The role of the envelop detector
could be underlined here. Indeed without it, the condition dψ

dt 6= 0 could not be met in the case of
a sinusoidal scanning only. That is the reason why we are using a such demodulation processing,
which integrates the high-pass �lter for the derivative and the envelop detector which highlights
the highest amplitude of the signal which is therefore not 0 in presence of a contrast.

It was proved in the section 4.5.8 that the NWS is equal to x + ε in the case of Gaussian
functions described as follows: e−(x−k

σ
)2
. As the demodulated photosensor signals are expressed

as in (4.43), the mathematical equivalence are Xeq = Z
∆ϕ where Z = ψ − ψe and σ = d

∆ϕ .

Therefore, in the case of the visual sensor we are using, it can be established that:

WS

S
≈ ψ − ψe

∆ϕ
(4.44)

Moreover, to calculate the error from the equation (4.41), the equivalence for σ is:

σ =
d

∆ϕ
=

∆ρ

2
√

ln(2)∆ϕ
(4.45)

In the present case, if we adopt the assumption that ∆ρ = ∆ϕ, σ = 1

2
√

ln(2)
, which satis�es

the inequation
√

2 ln 2
2π ≤ σ, the error ε will be equal to 7% of the spacing between each pair of

photosensors.
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Setting the scale and o�set As one can see from the equation (4.44) is that there is no
scaling of the output. It means that the output is proportional to the angle. Indeed, it is more
a value �tting to the photosensor number of the array. Therefore, any scaling can be realized by
multiplying the ratio WS/S by the scale required. Here, the output can be directly the angle by
multiplying be the spacing between 2 photosensors ∆ϕ.

An o�set is also required to set the output value relative to its environment. This o�set
correspond in �nding the ψe position relative to the photosensor array. It is the main advantage
of this algorithm, it only requires 2 values as input; one from the layout of the photosensor array,
usually known and another from a calibration.

But better results could be expected if a calibration is done for each ∆ϕ. It would surely
improve the linearity but also the complexity. It is a trade-o� between complexity of the cali-
bration process and the expected resolution. A such calibration would not really be a signi�cant
improvement if the ASF are not symmetrical or well shaped. But it would be particularly well
suited to ASF �tting very well with the Gaussian-shaped functions.

4.7 Supplementary results and information about the robotic ex-

periment

4.7.1 On the calibration process

It is not referenced, but an amplitude calibration is made in order to have a similar amplitude of
each photosensor for a given contrast. This was done once and for all, before any experiments.
The amplitude calibration is here to compensate for the di�erence between the photosensors.
These di�erence are coming from the di�erent Angular sensitivity and the electrical circuit re-
sponses.

4.7.2 About the control strategy

A - Distance control

This experiment consists in following the target at a distance of 70cm. The Target generates
short and fast movements, forward and backward. Figure 4.12a shows the distance measurement
compared to the setpoint and the ground truth and Figure 4.12b shows the Target and ACEbot
speed during the experiment. One can see that although the distance is well estimated, the
maximal speed of ACEbot is not fast enough compared to the Target to decrease signi�cantly
the error. During this test, the mean error is only 3.86cm with a standard deviation of 2.1cm.

Moreover the reaction time could be faster if the speed of the target was estimated and used
in the control law (see appendix D.4). The inertia of the robot plays a role in this response too,
but not as much as the controller, because the acceleration is quite close to the target one. Here,
the lag between target and pursuer movement could be decreased.

The mistake comes from the controller in itself which is based on a position controller. It is
similar to assumed that the target is not moving, leading to a steady state error. A controller
with a target speed estimation would provide a better tracking, improving the pursuer response.
For example, other studies [Mariottini et al., 2009, Das et al., 2001, Das et al., 2002, Cowan
et al., 2003] used an EKF (Extended Kalman Filter) to improve the dynamic response in a
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Figure 4.12: Simple target trajectory which is moving back and forth in front of the
robot and marks some stops. a) The distance between the robot and the
target, in blue the reference, in red the measurement and in green the
groundtruth calculated from the motion capture system. b) The speed
of the target and ACEbot in green and yellow respectively. a1-b1-a2-b2)
are zoom of the grey part of sub�gures a and b from 18 to 22s and 57 to
61s, for the �rst and second ones respectively.

leader-follower scenario without communication. This can be reproduce for pursuit behavior.
See appendix D.4 to have a better understanding of the problematic and its possible solution.

B - Designed Limitations

It should be noticed that in the controller, there is a saturation that cancel any translation in the
case that the orientation error is above ±15◦. This saturation is useful to prevent from moving
forward if the target is close to the limit of the FOV of the robot. Indeed, in this particular
situation, the robot could go forward before compensating of the orientation which could lead
the target to go outside the FOV. Moreover, in this situation the approximation of small angle
can be assumed. If ε̄r is small, sin (ε̄r) = ε̄r. The same equality can be done for the angle β, the
angle between the direction of the ACEbot and the line between the center of inertia of both
robots, ACEbot and the target (see �gure 4.13)
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Figure 4.13: Modi�cation of �gure 4.4b. It shows that the angle β, the angle between
the orientation of ACEbot and the line joining the center of the robot
and the center of the target is not equal to ε̄r, the retinal error.

Figure 4.13 shows indeed that ε̄r 6= β which led to a mistake in the expression of the state
vector X̂1,2,3. It is not very relevant in our case because the approximation of small angle hold
but if the FOV is increased, it could become a problem in the state estimation.

From the law of cosines (in France also called the theorem of Al-Kashi), the following expres-
sion can be written:{

L2 = Deye
2 +Dmeas

2 − 2Deye ·Dmeas · cos(π − ε̄r)
Dmeas

2 = L2 +Deye
2 − 2L ·Deye · cos(β)

(4.46)

where Dmeas is the distance estimated thanks to the subtended angle measurement, i.e. Dmeas =
Rtarget
sin(ᾱ/2) . Deye is the distance between the center of rotation of the robot and the position of the
visual sensor.

The right values for L and β can be deduced: L =
√
Deye

2 +Dmeas
2 + 2Deye ·Dmeas · cos(ε̄r)

β = arccos
(
L2+Deye2−Dmeas2

2L·Deye

) (4.47)

Then, the correct state vector is expressed as follows:

X̂1,2,3 =

 xrob

yrob

ψrob

 =

 −
√
Deye

2 +Dmeas
2 + 2Deye ·Dmeas · cos(ε̄r)

0

−β

 (4.48)

With this state estimation, the feedback loop on the retinal error used to compute ψ∗ is redundant
with the one on the robot control position. If the eye is rotated, the value of ε̄r should add this
o�set.
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No experiments were made with this new controller, the impact on the robot dynamics is
still unknown. I think it can improve the robot behavior a bit, but it is likely that it would not
be signi�cant.

C - Choice about the heading direction

The control could have been to use the frame transformation in the way the misalignment would
have been compensated by a sway movement. It was not the �rst choice because it is not really
e�ective when the target is far away and if the forward speed is higher than the lateral one, the
target could be lost. However, sway movement could be interesting in the case of swarm. The
robot could assess its relative position according to a leader without modifying its heading. In
this case, the distance would not change very much or at least being bounded by the dynamics
of the leader. The possibility of loosing it is very reduced. The estimated state vector, which is
the Frame Transformation vector in �gure 4.8 would be expressed as follows:

X̂1,2,3 =

 xrob

yrob

ψrob

 =


− cos(ψ∗) ·

(
Rtarget
sin(ᾱ/2)

)
−Deye

− sin(ψ∗) ·
(
Rtarget
sin(ᾱ/2)

)
0

 (4.49)

where the notation are the same as in (4.29).

This kind of control would assume to have a constant heading, but a slow drift could happen
if no other sensor is used. A compass could be used to compensate for this drift onboard. A
more complex compensation strategy with visual feedback could be at work as well. Another
easier solution could have been to used external sensor as the motion capture system to �x the
heading with the appropriate feedback loop.

4.8 Discussion on the localization measurements and their use in

a control law

4.8.1 About the known target hypothesis

The control law was designed around the hypothesis that the object to track was known. Indeed,
it is assumed that the object is a cylinder with a known diameter. The assumption about the
cylinder diameter is needed to convert directly the measurement of the subtended angle into the
distance to the object. This assumption can be valid in a biological context, as suggested by
Collett and Land [Collett and Land, 1978] that the size of the female could be known by the
male in the female interception task. Although this hypothesis has not really be con�rmed yet.

A such control is interesting because it helps to have a distance measurement at each time
without requiring the computation of its egomotion [Jung and Sukhatme, 2004] nor binocular
vision [Kwon et al., 2005]. It requires to have the target in its FOV and not losing it.

Another point to underlined is that, with the transformation, the distance estimation error
is decreasing as the target get closer with the same resolution of the angular position of the edge
4.14. This feature is interesting as it ensures to converge toward the target and to catch it if its
a prey or a potential mate.
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Figure 4.14: Comparison of the estimation error according to the real value. a) The
maximal error is calculated with an error of +0.78◦ and −0.78◦ for the left
and right edges respectively relative to the theoretical positions. +0.78◦

and −0.78◦ for the left and right edges respectively in were used to cal-
culate the minimal error. The minimal error leads to overestimate the
distance and the maximal error to underestimate the distance. It can be
seen that closer the target, reduced is the error estimation. b) The error
of the estimation relative to the distance.

4.8.2 A Controller with a linearization of the subtended angle measurement

But another way of doing the control of the robot is to assessed the subtended angle directly.
Therefore, keeping a distance constant would also be possible but with a distance depending on
the target size. A simple linearization at a certain point can be imagined as in �gure 4.15 to
transform the subtended angle measurement into a distance value.
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Figure 4.15: Linearization of the distance function according to the subtended an-
gle.The blue curve is the theoretical function for a given target size of a
radius equal to 0.152m. The red one is the linearization at a distance of
0.7m. The blue curve is the theoretical function for a given target size
of a radius equal to 0.152m. The green and the red ones are respectively
the distance outputs if there is an error on the subtended angle of +10%
and −10% respectively.

This solution is very simple and can work only if the target is close to the setpoint. However,
far from this position, it would not provide an accurate response especially for large subtended
angles. This simple solution could only be used in a leader-follower scenario or a swarm, as it is
needed to start close to the reference point. In such scenario, the robot to follow is completely
known, therefore the solution using the size of the target would be preferred.
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4.8.3 A Controller with the subtended angle measurement directly

One can choose to do a control directly on the subtended angle. It present the advantage to not
require the size of the target, at least in the control loop itself. But maybe, the knowledge of
such data or at least a bounded value could be helpful in designing a controller.
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Figure 4.16: a) Distance according to the subtended angle. The blue curve is the
theoretical function for a given target size of a radius equal to 0.152m.
The green and the red ones are respectively the distance outputs if there
is an error on the subtended angle of +10% and −10% respectively. b)
Percentage of the distance error for both conditions

It is shown in �gure 4.16 that an error of ±10% in the subtended angle value will lead to
a variation of distance higher for smaller subtended angle than bigger one. It will lead to a
larger position error according to the target at larger distance compared to smaller one. It is a
similar problem to the localization one expressed in �gure 4.14. For target following, it could be
annoying because the position error would depend on the setpoint chosen.

4.8.4 A Controller with the inverse of the subtended angle

Figure 4.17a shows the Inverse of the Subtended Angle (ISA) according to the subtended angle
itself, which is obviously an hyperbolic function. The interesting property of the ISA is that the
distance can be expressed as a linear function of it. The coe�cient of determination R2 is equal
to 0.999 for this linear regression estimation in the example of �gure 4.17b. Here, the example
is made with a target with a radius of 0.152m as used in the experiment. It can be seen that for
small ISA value, under 0.01deg−1 the error increase. It means that the error is always under 5%

for ISA = 0.0097deg−1, which correspond at a subtended angle larger than 103◦, or a target of
radius 0.152m seen at a distance closer to 0.194m.

As depicted in �gure 4.18, the size of the target has an impact on the slope of the ISA
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Figure 4.17: a) Inverse of the Subtended Angle (ISA) according to the subtended angle.
b) Distance of a cylindrical target of a radius equal to 0.152m according
to the ISA in blue compared to a linear �t. c) Error of the linear �t
relative to the exact inverse function.
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Figure 4.18: a) Variation of the subtended angle according to the distance for six dif-
ferent target sizes with a radius of 0.02m, 0.06m, 0.1m, 0.14m, 0.18m
and 0.22m respectively. b) The Inverse Subtended Angle versus the dis-
tance for the same targets. These 2 graphs highlight the di�erence of the
response of the ISA for di�erent target size.

104



4.8. DISCUSSION ON THE LOCALIZATION MEASUREMENTS AND THEIR USE IN A
CONTROL LAW

according to the distance. Therefore, in the context of an unknown target, it would be di�cult
to have a controller that adapt to all of these variations.

However, if the gain could be estimated, the size of the target would be known. In a situation
where the target is immobile or considered slow compared to the dynamics of the pursuer, and
the egomotion well estimated to have the variation of the relative position (i.e. the distance),
the size of the target would be identi�ed.
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5.1 Summary

This chapter depicts the similarity of the ACEbot pursuit behavior with the hover�y trajectories
when the male follows the female. The control strategy is discussed with the cues used to perform
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such behavior. It seems that the male hover�y does not estimate the target speed of the female
during pursuit.

An experiment with a decoupled eye from the ACEbot frame was made with a saccadic
tracking. It shows good results but no real di�erence was observed with a �xed eye. We argue
that the uniform resolution over the entire FOV balanced the need of an additional degree of
freedom for the eye.

Target detection is also investigated. The need to initialize the visual processing for the
pursuit task makes us think about bio-inspired principle of target detection. It is still unclear
what the information used by the insect is to ensure to pursue a potential prey or mate.

Finally, it is established that few modi�cations in the pursuit controller of ACEbot are needed
to perform interception. It is even shown that more elaborate trajectories are possible only by
orienting the eye at a di�erent location. It is known that dragon�ies use even more complex
strategies in order to anticipate the displacement of their prey.

5.2 Bio-inspired following behavior

5.2.1 Comparison between robotic and hover�ies experiments

The strategy developed in this thesis is based on the measurements of the angular position of 2
edges of the target, in order to elicit the subtended angle and the orientation of the target in the
pursuer FOV. The measured subtended angle can be converted into a distance measurement on
the assumption of a known target size. These estimated parameters, ψ and d (the orientation and
the distance respectively), are controlled so as to keep ψ and d equal to 0◦ and 0.9m, respectively.

[Collett and Land, 1975] observed some trajectories of the hover�y Syritta Pipens L. that
achieved a following behavior with a precision of 1cm at a distance of 10cm. As can be seen in
�gure 5.1, similar trajectories between robotic and insect observations are achieved. Therefore,
the strategy that consists of keeping the target in the middle of the FOV seems to be compatible
with the biological observations. It should be highlighted that the insects are using visual cues
to maintain the distance from the mate. The control is not identi�ed as the di�erence between
distance and subtended angle is hard to distinguish (see chapter 4).

It is also interesting to note that in �gure 5.1e the distance pro�les are very similar between
the insect and the robotic experiments. These variations in the distance to target are likely to be
caused by the position controller, which is slow when the direction of the target changes, as seen
in chapter 4 and could be fully compensate for target movement with a target speed knowledge
(see appendix D.4). For the insects, the reason could be identical. It would be a clue for no
target speed estimation, but further investigation should be made in order to clearly conclude
on this theory.

One could say these variations could also be due to the variation of the subtended angle of
the female in the male FOV. Indeed, in the beginning of the pursuit, the male sees the face of
the female, in the middle the female presents its side, then its back, to �nally �nish with its
side. Figure 5.2 shows no direct correlation in the evolution of the 2 measurements. Even by
comparing the invert of the subtended angle which has been proven to be quasi proportional to
the distance in �gure 4.17. It is very di�cult here to draw a conclusion as the measurements
are noisy. Another similar experiment should be realized with more precision to really form a
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Figure 5.1: Comparison between the following trajectory observed during Syritta
pipens L. mating process by [Collett and Land, 1975] (a) and the tar-
get following trajectories of ACEbot (b, c and d). In a), the male and
the female are represented in blue and red respectively. Dots are repre-
senting the head position and the lines are the orientation of the body. In
b-d), the target is represented by a green dot and a continuous line for the
whole trajectory. ACEbot, the pursuer, is represented in yellow; the dot
is the eye position and the line represents the robot orientation. e) The
distance between the 2 subjects in every experiment is plotted versus time.
It turns out that the distance to target follows a similar pattern for both
the hover�ies and the robots, at a di�erent scale of course. The markers
are separated by 40ms in time in sub�gure a and 400ms in the others.
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Figure 5.2: Evolution of the distance, in blue, compared in a), to the subtended angle
of the female perceived by the male Hover�y (in red) and in b), to the
invert of the subtended angle of the female perceived by the male (also in
red). To calculate the perceived subtended angle, the female is considered
as a rectangle of 9 by 3mm and the largest subtended angle is taken as
measurement.

conclusion.

Moreover, the pursuit strategy of the Syritta pipiens L. is not completely understood, as it
can follow and maintain distance to its potential mate before trying to catch it in two manners
depending on the position of the mate in its �eld of view. It uses mostly saccades and sway
movements when the target is on the side but does continuous tracking when it is upfront.
Sometimes, it was also observed that hover�y does sideways movement even if the mate is in
front of it, but these movements were unpredictable [Collett and Land, 1975].

5.2.2 Discussion on optics and visual cues with respect to biological counter-

parts

The good precision achieved by the male in the mate following is quite impressive regarding the
nature of its eye. [Collett and Land, 1975] explored di�erent hypothesis for the cues used by the
hover�y Syritta Pipens L. to display a following behavior with such precision. Focus, disparity,
size determination or motion parallax are the four possible cues studied. The focus was excluded
immediately because in the compound eye, it is a �xed value and a variation between 5mm to
in�nite would be di�cult to sense. Disparity is the di�erence between left and right eyes. It is
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similar to the binocular vision which greatly depends on the baseline of the 2 eyes (250µm for
the Syritta Pipens L.). As a consequence, this seems unlikely because of the precision of the eye
that it would require.

The robotic experiment here underlined the fact that the distance from the target should
be measured during the following task. However, the principle used by the hover�y might be
di�erent. The subtended angles they are dealing with are smaller compared to their optics. As
far as I know, no study has tackled the problem of distance estimation with low spatial resolution
(∆ϕ > 2◦) and monocular vision in the case of target tracking. The ESTMD ('Elementary' Small
Target Motion Detector) algorithm uses an optical blur with a Gaussian function of full-width
at half maximum of 1.4◦, but does not reduce the spatial resolution of the camera [Bagheri
et al., 2015]. In robotics, the egomotion is used to create a depth map in SLAM algorithm
with monocular camera. But, the robot moves in a steady environment and this could not be
transferred to distance estimation in target pursuit context. However, with cameras, it is possible
to identify a target and use known metrics of it to estimate distance [Dagan et al., 2004]. With
the very coarse resolution of the insect eye, it is di�cult to imagine such identi�cation. But
maybe it is what �ies do with some color or shape cues.

5.3 Steering by Gazing: a Saccadic Eye Controller to follow the

target

The same experiments of target tracking were reproduced with a rotation of the eye. This
control architecture was previously suggested in [Kerhuel et al., 2010] and was inspired by the
�y head and body decoupling. The main idea was to have an eye decoupled from the body
with a rotational degree of freedom. In their experiments, it was shown that with this added
rotation, the tracking response was quicker because the eye movement dynamics were faster than
the robot's body dynamic.

In the present PhD project, a closed-loop control at high speed was not achievable. The
maximal speed of the eye (induced by the servomotor MKS DS92a+) was about 860◦/s, which
was a very interesting feature. But due to the adaptive pixel of the CurvACE sensor, the
dynamics of the measured position were too slow after signal processing. As it will be seen
in �gure 5.4, the photosensor's response need time to adapt. The solution proposed here to
overcome this drawback was to realize a saccadic control as done the praying mantis on a textured
background [Rossel, 1980,Kirschfeld, 1994]. A �ne tuning of a smooth controller could have been
done but the dynamics would have been close to the robot's own.

5.3.1 Description of the Saccadic Eye Controller (SEC)

In this section, the eye's controller uses saccades to make it able to follow the target with
discontinuous movements. The control scheme is presented in �gure 5.3.

First, the comparison between the retinal error setpoint ε∗r and the measurement ε̄r gives an
error angle ε in the eye frame. Then, if the absolute value of ε is above ∆ϕ, a saccade is triggered
with an amplitude equal to the visual error ε. However, the saccade trigger can be inhibited if
the duration since the last saccade ∆tsaccade is not long enough, here the minimum intersaccadic
duration is Tmin = 0.5s. Finally, the saccade generator gives a di�erence of position between 2
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sample time equal to −ε in the case of saccade or 0 otherwise. As ε is expressed in the eye's
frame, the position at (t− 1) should be added to the new correction in order to give the new ψer

value. This computation acts as an integrator.
In the eye controller, a Vestibulo Occular Re�ex (VOR) was also added to compensate for

the rotation of the robot in order to keep the target at the same position in the FOV during
the robot rotation. As the eye is moving faster than the robot thanks to the fast servomotor,
it reaches the target line of sight at each saccade before the end of the change in the robot's
heading. Then, the robot movement rotates at a slower speed to get in the same direction.
During this movement, the gaze direction stays constant with respect to the environment thanks
to the VOR as shown in section 5.3.3. The input of the VOR comes from a rate gyro (an Analog
Devices ADXRS300), which is �ltered, and provides a measurement of the rotational speed of
the robot around its vertical axis. The opposite of the rotational speed is added to the saccade
signal before being integrated to provide the angular position of the eye. The choice to use a rate
gyro in the loop compared to the wheel speed measurement which could then give a rotational
speed, was done to avoid false measurements due to wheel sliding and to demonstrate that such
an algorithm can also be used on a �ying robot as demonstrated in [Kerhuel et al., 2010].
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Figure 5.3: Description of the saccadic eye control system. The Bandpass �lter of the
rotational speed is composed of a high pass �lter and a low pass �lter, both
order 1, with cutting frequencies of 0.05Hz and 6Hz, respectively. This
control loop is made at a sampling time Ts equal to 2ms. It is highlighted
that between two saccades, the retinal error measured has no in�uence on
the position of the eye.

5.3.2 Vestibulo Fixational Re�ex: Eye Tracking experiment

Firstly, to demonstrate the performance of such saccadic control, a target was placed in front of
the Active CurvACE sensor, describing an eight-shaped trajectory as presented in �gure 5.4a.
Figures 5.4b and 5.4c show the angle measurements of the position of the target and its size in
the eye FOV.

As can be seen in �gure 5.4, the estimated target orientation has some overshoots at each
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Figure 5.4: a) Trajectory of the target in front of the sensor in the XY plan with the
ACEbot position and in blue the �eld of view of the visual sensor
b) Tracking response of the sensor with the eye position in blue, the es-
timated value which is the retinal error added to the eye position and in
green the theoretical value.
c) Comparison between the measured subtended angle of the target and
the ground truth calculated from the Motion capture system during the
same experiment.

saccade but converges to the theoretical value. During the saccade, the target is considered
not visible. Thus, the inhibition is required, similar to what may occur in animal saccadic
tracking. For example in �ies, they are using a mechanism to suppress the eye input during a
body saccade [Heisenberg and Wolf, 1979]. As a result, the eye orientation tracks the target
accurately despite the discontinuities.

The minimal time between two saccades (or the time of inhibition) Tmin is equal to 0.5s. This
value is chosen according to the convergence dynamics of the visual processing. It could also be
noticed that di�erent strategies could have been chosen to saccades. For example, a quantization
could have been chosen. But based on the observation on the praying mantis tracking a prey on
a textured background [Kirschfeld, 1994], the saccades' amplitudes are not constant. Therefore,
the solution of canceling the error at each saccade was preferred. It seems to be the best solution
in order to keep the line of sight the closest to the target position during the inter-saccadic
period, without making any assumptions on the future target position.
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5.3.3 Performance of the Vestibulo Occular Re�ex on ACEbot

A Vestibulo Occular Re�ex was incorporated into the control law to make the line of sight lock
onto the target regardless of the robot rotation. In the following experiment, no target was in
front of ACEbot and the Fixational re�ex was deactivated. The robot started with a simple
rotation due to a step input reference. Figure 5.5a shows that the robot estimated the rotation
and compensated for it. It can be seen that the gaze i.e. is converging to the robot orientation
very slowly due to the e�ect of the High-Pass Filter, as the VFR was deactivated. Figure 5.5b
shows the VOR response when the robot is making sinusoidal rotation. It can be seen that the
gaze is always heading in the same direction with less than 5◦ of variation, despite the 15◦ of
amplitude of the robot rotation. The performance could have been improved if a feedforward
was included in the eye controller, using that the rotational setpoint as an input. But a good
identi�cation process would have been necessary in order to predict the robot dynamics. However,
in the case of a �ying robot, a feedforward would help in case of volontary movement but not in
disturbance rejections. Therefore, a rate gyro would still be necessary.

0 0.5 1 1.5 2 2.5
−30

−20

−10

0

10

20

A
ng

le
 [°

]

 

ψ
er

ψ
Robot

ψ
gaze

 = ψ
Robot

+ψ
er

0 10 20 30 40 50 60 70 80 90 100
−20

−15

−10

−5

0

5

10

15

20

Time [s]

A
ng

le
 [°

]

 

ψ
er

ψ
Robot

ψ
gaze

 = ψ
Robot

+ψ
er

b)

a)

Figure 5.5: a) Measured response of the Eye angle to a robot rotation for a step input.
b) Measured response of the Eye angle to a robot rotation for a chirp
reference, from 0.1Hz at 7.5s to 1.2Hz at 100s.
In both cases, the blue, the yellow and the black curves are the Eye-in-
Robot angle, the robot angle in absolute frame and the gaze direction also
in the absolute frame, respectively. In this situation, no target was in front
of the eye and the VFR was deactivated. It shows that the rotation of the
eye compensates for the rotation of the robot

Another experiment has been conducted to see the performance of the VOR in coordination
with the VFR. The robot ACEbot was placed in front of the target and a step was applied on the
retinal error setpoint, which went from 0 to 6. Figure 5.6 shows the results of the experiment.
In the light grey part, it can be seen that the retinal error was constant and under the threshold
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Figure 5.6: The target is placed in front of the robot and a step of 6◦ is made on the
retinal error setpoint at 4.5s, which lead to a saccade of the eye, hence a
rotation of the robot. a) Measured retinal error of the target position in
the eye FOV in red and the reference in plotted in black.
b) In blue, the Eye-in-Robot angle. In yellow, the orientation of the robot.
In black, the gaze direction (i.e. the orientation of the eye) expressed in
the absolute frame and in green, the orientation of the target according to
the robot also expressed in the absolute frame.
c) Measured subtended angle in red compared to the ground truth.

∆ϕ. Then, the step is applied (see �g. 5.6a). A saccade follows because the error became too
big. The convergence of the retinal error measurement and then a drift are also observed in the
dark grey part. This drift is mainly due to the high pass �lter used in the VOR processing.
Indeed, the cuto� frequency is slightly too high and does not take into account the low speed
movements of the robot. The eye (ψer) rotated and compensated well the rotation of the robot
(ψRobot) at the beginning, but did not follow the robot movement after the overshoot (see �g.
5.6b). Therefore, the gaze orientation was not straight and showed a small drift, which lead to a
second saccade and the convergence to a stable position (see the white part of the �g. 5.6). This
position is very speci�c as the robot is at the end, heading in the same direction as the gaze, i.e.
nearly at −6◦ from the target direction, to have a retinal error of around 6◦.

5.3.4 Robotic application of the Pursuit scenario with the Saccadic Eye Con-

troller

A - Fitting the Saccadic Eye Controller into the Robot Controller

The structure of the robot controller with the Saccadic Eye Controller is similar to the one de-
signed in [Kerhuel et al., 2010], as the Eye controller setpoint is also used as the yaw measurement
in the robot controller. The robot controller in itself is very close to the one used in section 4.5.5
of chapter 4, because the control and the state estimation are using the same methods. Figure
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Figure 5.7: ACEbot controls its distance to the target using visual cues (ε̄r, ᾱ) and the
4 wheel speeds. A rate gyro is added to provide a yaw speed measurement
of the robot and a servomotor to rotate the visual sensor.

5.7 sums up the whole controller with the sensors and actuators embedded onboard ACEbot.

B - Experimental performance achieved

The same target trajectory as the one done in the section 4.5 to test the repeatability, was
reproduce to test the response of this di�erent control law. The results of several experiments
can be seen in �gure 5.8. The robot is able to follow a target accurately at a constant distance.
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Figure 5.8: Pursuit trajectories with the Saccadic Eye Controller. a) One trajectory
of the target and the pursuit behavior of the robot. ACEbot and the
target are plotted every 6s and the �rst position plot is the moment where
the pursuit starts. In dark blue, the measured position of the target in the
active CurvACE sensor FOV and in light blue, the whole FOV used. b) All
the trajectories made with the robot, with in green the target trajectories
and in yellow the pursuer ones.
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Figure 5.9: Pursuit trajectories with and without the Saccadic Eye Controller (SEC).
The means of all trajectories without the SEC, presented in �gure 4.10,
are plotted in green and yellow for the target and the pursuer, respectively.
The means trajectories with the SEC, presented in �gure 5.8b, are plotted
in blue and red for the target and the pursuer respectively. The colored
areas are the standard deviation observed for the di�erent trajectories
realized.

5.3.5 Comparison between the �xed and decoupled eyes

It is shown in �gure 5.9, that the results with a �xed or a decoupled eye in this experiment lead
to similar results. These performances could be explained by the fact that the angular precision
is the same over the entire �eld of view. Therefore, as long as the target is in the FOV, the
localization is achievable with the same precision. The Saccadic Eye Controller displays no real
advantage on this application with this target trajectory.

The other advantage could have been to reduce the number of the photosensors used and
therefore the computational resource. Indeed, as the eye rotates toward the target, it should be
in the center of the FOV more often. But as seen in �gure 5.10, it is not very clear. Indeed, the
maximal and minimal values of the edge positions measured are slightly equal during the whole
pursuit. However, an interesting observation can be made at the beginning of the pursuit. In
the case of the eye orienting itself toward the target, the FOV concerned at the starting point is
always in the interval [−20; 20]. After, the FOV used is larger because the eye is moving too slow
to keep the target in the central zone. If the time between the saccades Tmin could be reduced,
the number of photosensors used for the tracking could be also reduced.

In a situation where the target crosses the FOV very fast, an eye featuring saccadic movements
could be an interesting feature. It could enable keeping the target in the FOV. This advantage
has been established in [Kerhuel et al., 2010] which used a visual sensor with a FOV of ≈ 4◦.
It could show also good performance with a sensor with a fovea (i.e. a higher resolution in the
center of the FOV).

But, with our visual sensor, all of these possibilities are not shown. If the eye could move
fast, the time convergence of the adaptation process of the CurvACE photosensors would make
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Figure 5.10: a) The edge position measurements in the FOV for all the pursuits with
no eye rotation and b) the ground truth measurement in the same case.
c) The edge position measurements in the FOV for all the pursuits with
the SEC and d) the ground truth measurement in the same case.

it blind for a few moments, at least unable to perform tracking. To conclude, with this sensor
and this robot, the advantage of using a rotational eye was not clearly highlighted.

5.3.6 Bio-inspired discussion

It was observed in nature that the insect uses such a strategy that the head is moving before the
body with a faster dynamic response [Hateren and Schilstra, 1999].

It was shown thanks to the robotic experiment that the rotation of the eye is not needed. But
in the case of the insect, the existence of a fovea (which is an acute zone, see section 1.2.2) could
explain the need of such head re-orientation. The small resolution of some area of the FOV could
be not su�cient to perform some tasks, such as target tracking. Therefore, the head movement
orients the acute zone toward the target to ful�ll the target localization task. This mechanism
compensates for the non-uniform precision over the entire eye. It seems to be an interesting
feature as motor-control is less computationally demanding than the visual processing of several
dozen ommatidia.

5.4 Target detection approach

The visual algorithm that we developed to localize a target requires that the indexes of the 2
NWS to be initialized. To ful�ll this purpose, a target detection algorithm must be developed.
With the hypothesis that the target is the only moving object in the environment, or at least the
environment moves slowly or with low amplitude, the objective is to detect the moving object
with the target speci�c features (i.e. two edges su�ciently separated). As CurvACE responds to
light variation, with an appropriate temporal �ltering, it becomes possible to detect the target.
Indeed, the response of a photosensor is dependent on the speed and the contrast. An appropriate
selection can be applied to select the appropriate edges, then the NWS indexes. The algorithm
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developed will be compared to what is known in prey or mate detection in insects to see the
similarities.

5.4.1 Constraints and hypothesis for target detection

The goal is to detect the cylindrical target used previously. As the tracking algorithm follows 2
edges, a criteria should be found to be able to discriminate the edges of the target from the ones
of the experimental visual environment.

The visual sensor could be compared to a monocular camera in the fashion that it is impossible
to detect the depth of the visual objects, without any motion. In this situation, the binocular
vision of insect is not used as well to detect prey or mate because of the distance [Collett and
Land, 1975]. The movement detection should be the best cue. Indeed, in our setup, only the
target is moving and the world is considered still. The movement of the contrasts in the FOV
cues is the optic �ow. Therefore, it has the known property to be dependent of the speed and
the distance of the target.

As the CurvACE sensor response varies with change of illuminance for each photosensor,
because of the Delbrück circuit, the variation of illuminance is highlighted with strong output
variation. With the hypothesis that the ambient illuminance is considered constant (or varies
slowly), if the response of one photosensor changes, it is because an object has moved in the �eld
of view of this photosensor. Therefore, it is an interesting feature to be able to detect the target.

Thus, the idea developed here, is to detect 2 moving contrasts with a su�cient angle between
each other which are moving with enough speed. To do this, the vibration of the eye is stopped
to avoid creating transient movements. The pixel response is �ltered and triggered to detect this
illuminance variation. As the pixel response depends on the speed of variation of the illuminance
and the intensity change, to cross the threshold the target has to have enough speed and be
salient enough compared to the background.

5.4.2 Target Detection Algorithm

The low-pass �lter is an order 4 �lter with a cut-o� frequency of 30Hz and the high-pass �lter is
order 2 with a cut-o� frequency of 0.5Hz. The temporal �lters used are inspired by [Expert et al.,
2011], especially for the low-pass �lter. The cut-o� frequency of the high-pass �lter is di�erent,
however, because in the optic �ow algorithm its goal is to act as a forgetting factor to avoid using
too old contrast detection that would have no relevance as compared to the movement of the
robot. However in the target detection, its role is only to remove the slow variation of the ambient
light, but should not be too high to detect target moving far away. Finally, these temporal �lters
have for objectives to reduce the noise and also to cancel the steady state response, in order to
detect only su�ciently fast light change.

The absolute �ltered photosensor signals are tested if their values are above a threshold (here,
4.5). This threshold is chosen accordingly for the target contrast and speed range. The di�culty
is to have a low enough threshold value to detect low speed or far targets, to detect the target
each time it is in the FOV, but also high enough to ensure the signal triggered is not noise,
leading to a false detection.
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Figure 5.11: A target pass in front of the CurvACE sensor. a-d) Photosensor signals
after the readout of CurvACE and e-h) Absolute �ltered signal of the
same photosensors. The black line shows the threshold used for the de-
tection algorithm. The number of the photosensors goes from right to the
left of the FOV, here centered in between the 11th and 12th photosensor.

After the trigger signal processing, two conditions should be met to start the pursuit. The
triggered pixels should be:

� only 2 during 30ms, or more than 2 during Tdetect and the 2 last on are selected

� spatially separated by 2 others

These conditions ensure a factual and robust detection. The condition on the minimal time where
2 photosensors are triggered is to avoid false detection due to noise. The condition of having
only 2 and to have them be separated by 2 others is to ensure that the localization processing
will be able to work after the detection.

Algorithm 2 details how it is done. TMD refers to the triggered photosensor, the value it
can contain are 0 or 1, for the non-triggered pixels and triggered ones, respectively.

The results of this detection can be seen in di�erent situations: in the following behavior in
�gure 5.9 and in the interception behavior in �gure 5.14.

A big assumption in the processing is to suppose that only the target is moving in the world
or at least this environment is slowly changing. The possible limitation is that this selection
process does not sense any di�erence between a big target moving fast far away and a smaller
one moving slowly in front of the sensor. This behavior has not been highlighted during our
experiments because the target was always the same.

120



5.4. TARGET DETECTION APPROACH

Algorithm 2 Pseudocode for the detection process of the target
1: t0 ← 0
2: acquisition TMD
3: if sum(TMD) >= 2 and t0 = 0 then
4: t0← time
5: while (time− t0) <= Tdetect and sum(TMD) >= 2 do
6: time← time+ Ts
7: acquisition TMD
8: end while
9: if sum(TMD) >= 2 then
10: while sum(TMD) 6= 2 do
11: acquisition TMD
12: end while
13: ctrst← 1
14: for i = 1 to N do
15: if TMD(i) = 1 then
16: idx_old(ctrst)← i
17: ctrst← 2
18: end if
19: end for
20: return idx_old
21: end if
22: end if

5.4.3 Target detection hypothesis in Biology

The target detection in the chasing insects is not very well known and di�erent studies are
suggesting di�erent approaches.

A - Binocular vision

The Praying Mantis use binocular vision to estimate the distance of a prey in order to launch
its attack [Nityananda et al., 2016].

A speci�c case of the dragon�y which has a large FOV covering by its 2 eyes varying from 22◦

above the head to 34 in the anteroventral part in Aeshna interrupta lineata walker [Pritchard,
1966] could be involved in target detection. But it is most likely to be used in the last phase of
the interception process, because it starts its chase quite far from its prey.

B - Velocity Size Ratio

The Killer�y target detection is based on a proportionality between the speed and the subtended
angle of the target in its �eld of view [Wardill et al., 2015]. The identi�ed parameters of the
target detection process seems to be the subtended angle and the angular speed of the target.
But nothing ensure to detect a close small target at a low speed from a big one seen further at
high speed.
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C - Subtended angle pro�le over time

In [Olberg et al., 2000], the angular velocity evolution, (i.e., angular acceleration) is thought to be
used for the target detection and discriminate between nearby small objects (insects) and distant
large ones (birds). As shown in �gure5.12, for the same subtended angle seen at the shortest
distance between the objects and the dragon�y, the angular velocity evolutions of the two objects
are di�erent and these variations can be used for the target discrimination. Furthermore, the
evolution of the subtended angles is di�erent which could be also used as a cue.
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Figure 5.12: a) Schematic representation of a dragon�y seeing a drosophila and a bird
in its FOV, at a distance of 5cm and 5m respectively, both seen with a
subtended angle of 3◦ at those two distances. The drosophila and the
bird are moving in straight line at 50cm.s−1 and 10m.s−1 respectively.
b) Theoretical angular speed of both animals measured by the dragon�y.
(a and b are modi�ed from [Olberg et al., 2000]) c) Theoretical evolution
of the subtended angle of drosophila and bird passing in the dragon�y
FOV.

However, the case presented here is particular. Indeed, another particular case where the
speed of the bird is now considered 50m.s−1 would show the exact evolution of both the angular
speed and the subtended angle.

Cases study It can be shown in 2 cases presented in �gure 5.13 that only the ratio between
speed and the distance is important. The two cases are perhaps not biologically relevant but
if a constant target speed is considered, scaling and combining these 2 trajectories can describe
a random trajectory. Therefore, they are very simple trajectories that highlight the physics
principle that the ratio between speed and the distance is not su�cient to discriminate the
distance to the object.

First case: rectilinear trajectory Let be an object moving at a constant speed Vo on a
straight line. Let be x the position of the object on the line with:

x(t) = Vo · t (5.1)
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Figure 5.13: a) First case, the target is moving along a straight line at a constant
speed. In this situation, the distance between the target and the ob-
server is changing. It is decreasing to the point where the distance is
minimum (i.e. the point where the target trajectory is perpendicular to
the line of sight, the line between the target and the observer) and then
the distance increases after this particular point. The subtended angle
and the angular position of the target are therefore varying in the ob-
server's FOV. b) Second case where the target is moving along a circular
trajectory centered on the observer at a constant speed. The subtended
angle is constant and the angular speed in the observer FOV is also con-
stant in this situation.

where t is the time.

If d is the shortest distance between a given observer and this object (see �gure 5.13a), the
angular position ψ of the object in the observer's FOV is:

ψ(t) = arctan

(
x(t)

d

)
(5.2)

The angular speed is therefore the time derivative of ψ:

ψ̇(t) =
ẋ(t)

d
· 1

1 +
(
x(t)
d

)2 =
Vo
d
· 1

1 +
(
Vo·t
d

)2 (5.3)

This equation highlights that the evolution of the angular speed in this situation is dependent
on the ratio linear speed over the distance. Then, for a given distance, a speed can be found to
match a given angular speed pro�le.

A similar observation can be done for the subtended angle α(t):

α(t) = 2 arcsin

(
diameter

2
√
x(t)2 + d2

)
= 2 arcsin

 diameter

2d

√(
Vo·t
d

)2
+ 1

 (5.4)

where d > 0. If the subtended angle is the same, the ratio diameter/d will be constant and if
the ratio Vo/d is also constant, then the subtended angle evolution will also have a similar pro�le
according to the time.

123



CHAPTER 5. BIO-INSPIRED BEHAVIORS: TARGET FOLLOWING, TARGET
DETECTION AND INTERCEPTION

case: the circular pro�le The same observation can be done on a circular pro�le, i.e. a
target that does circle around the observer (see �gure 5.13b).

As it is known, in the case of a circle, that:

Vo = d · ψ̇ (5.5)

The relation between the angular speed and the ratio Vo/d is direct. The distance is also main-
tained as constant, so the subtended angle is also constant.

D - Is there another cue used to discriminate a suitable target?

From these two situations described, it could be extended that for a target moving at a constant
speed, it is not possible to discriminate if it is a small target at a short distance or a big target
at a large distance as a speed pro�le can be associated in both cases to match the same angular
speed pro�le. But are all the ratios of speed over distance even possible? Maybe not, seeing a
bird �ying at 5m from the ground at 180km/h is not usual and even not achievable by many of
them. So, this observation could be enough because nothing in the animal kingdom matches.

It was observed that a speci�c ratio between speed and size trigs the chase in the killer�y
[Wardill et al., 2015]. Maybe the identi�ed ratio explains the takeo�, but other information can
be used during �ight, like the motion parallax, to check if it is a suitable prey or not and therefore
abandon the chase. It would have been interesting to see the catch rate or the duration of chase
for the di�erent target sizes and speeds. Indeed, in this study, the takeo� is observed but what
happens after could also shed light on the process.

Indeed other cues can be used to discriminate targets before initiating pursuit. If we observe
a typical insect �ight, it can be seen that saccades, i.e. fast body yaw movements, appear during
�ight. These kinds of �ight patterns could be used to discriminate a suitable target. To be
e�ective, the chaser would need to analyze the �ight along time. But the frequency of these
saccades seems to depend on the nearby obstacles [Lindemann et al., 2008,Kern et al., 2012].
Moreover, the saccade are also accompanied by sway movements which smooth the trajectory and
make them di�cult to detect in case of small amplitude [Schilstra and Hateren, 1999]. Detecting
the quick change of the orientation of the target could be possible, but in the case of interception
and closing quickly to the target, it should be di�cult to achieve with the expansion of the target
that constantly vary. Nothing for now supports this theory and the interception is perhaps too
fast for dragon�y to do such processing (duration of �ight up to 400ms [Olberg et al., 2000]).

Another hypothesis would be that the insect is still able to recognize a shape between two
possible targets. This is perhaps not true because �ies reacts to a ball [Wardill et al., 2015,
Boeddeker et al., 2003]. However, a bird could less be confused with a sphere than a drosophila
for example. As birds do not have transparent wings, their �apping wings are modifying their
shape in the visual �eld of view. This could be a solution to avoid takeo� for a bird. Therefore,
it could be only rough shape recognition involved in the Target identi�cation in addition to the
angular speed of the target in the pursuer FOV.
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5.5 Bio-inspired interception behavior

In section 5.2, it was shown that a target could be followed with a similar trajectory as compared
with a hover�y thanks to a basic position controller based on the distance and maintaining an
angle between the target and the follower to 0◦. Other experiments made on the mating of the
blow�y Lucilia displayed a smooth pursuit of the chaser regulating its speed according to the
distance and its orientation to keep it in the center of its FOV [Boeddeker et al., 2003]. Therefore,
we tested the possibility to realize this kind of interception trajectory with our controller. As
other insects exhibit more complex strategies (Hover�ies like Eristalis and Volucella [Collett and
Land, 1978] or dragon�ies [Olberg et al., 2000]), the e�ect of only changing the retinal error
setpoint was investigated.

5.5.1 Robotic experiments

A - Interception with target detection
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Figure 5.14: Interception trajectories with an eye-in-robot angle of 0◦. The trajectories
of both, the target and ACEbot, are the trajectories of the inertial center
point. The continuous lines are the target trajectories and the dashed
lines are the pursuer ones. The star displays the position of the target
when the detection occurred and the interception begins.

The interception trajectories of the robot were realized only by modifying the distance refer-
ence of ACEbot in the control loop (see �gure 5.14). The setpoint given for the X∗ reference is
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Figure 5.15: a) ACEbot and the target with an Eye-in-Robot angle (noted ψer) equal
to 0. b) ACEbot and the target with the retinal error εr equal to 0.
In all cases, the orientation of the target noted ψt satis�es the equation
ψt = ψer + εr.

1m. It means that the robot tries to go further than the target. A value of 0 could not have been
used, because it would have meant that the speed of the robot should equal 0 at the moment it
reaches the target. It would therefore have been impossible to reach the target because of the
deceleration.

In the experiments, the interception is considered done if the distance between the inertial
center of the target and the pursuer robots is under 0.46m. This distance is chosen to avoid
collision between the two robots.

Figure 5.14 shows di�erent target trajectories and the interception realized by the pursuer.
All the target trajectories are linear but with di�erent orientations. This also shows that the
detection process is able to detect the target in di�erent situations.

B - Comparison for di�erent retinal error setpoints

To test the e�ect of the retinal error setpoints on the pursuer trajectory, it was preferred to
change the orientation of the eye to ensure having the larger FOV when the target is close to the
reference, to avoid losing the target. The control of the eye is still to keep the retinal error to
0◦. The e�ect is the same as maintaining the target at an angle equal to the eye-in-robot angle
(see �gure 5.15).

Figure 5.16 shows that in the case of quasi linear trajectories of the target. The interception
trajectory is faster when the retinal error is larger. It can be seen that the pursuer is heading
away from the target, but toward the target's future position. It leads to a straighter trajectory.
The perfectly straight one is not achieved here. The retinal error setpoint should be chosen
carefully knowing the target speed and its own acceleration and speed capacity. But the target
trajectories are not perfectly linear either; a better position controller of the target should be
developed in order to make more reproducible trajectories.
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Figure 5.16: Interception trajectories with di�erent eye-in-robot angles. The trajecto-
ries of both, the target and ACEbot, are the trajectories of the inertial
center point. The continuous lines are the target trajectories and the
dashed lines are the pursuer ones. The star displays the position of the
target when the interception begins, the detection was made previously.

5.5.2 Discussion with respect to the biological counterpart

Small insects are, for example, relatively simple living things but have to be capable of catching
prey to survive and mate to perpetuate the new generation. However, all species are well adapted
to the prey they are chasing and have developed di�erent interception strategies (see �gure 5.17).
The �rst and what seems the most simple interception strategy is to track the target by keeping
it in the center of the FOV. The second one could be summed up by keeping the error angle to
a constant value, which is what has been done in �gure 5.16. It is also the same principle used
in nautical navigation, that if a ship is getting closer at the same line-of-sight angle, it will end
in a collision [Murtaugh and Criel, 1966]. The third one would be to keep an angle between the
target position and an external reference constant, also called the bearing angle. The two last
strategies lead to head toward a possible future position of the target.

Some insects perform the most simple interception trajectory, like the blow�y Lucilia [Boed-
deker et al., 2003]. In [Boeddeker and Egelhaaf, 2005], the authors do the hypothesis that the
heading direction is assessed in order to keep the target in the central part of the FOV and
the forward speed is controlled non-linearly according to the subtended angle of the target. I
think it is a more complex solution than having a position controller based on the subtended
angle measurement, because the function that regulates the speed does not take into account the
speci�c target speed, except in the case that all the females go at a similar speed. In the case of
the house�y (Fannia canicularis), it tracks the female by always �ying toward it and makes no
assumption on the future position of its quarry. But it seems to use a feedback loop on its speed
when it is close enough from the heading axis [Land and Collett, 1974].

Hover�ies like Eristalis and Volucella are also capable of computing an interception course
to catch females based on optic �ow measurement, position of the target in its �eld of view
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Figure 5.17: Target pursuit modes. a) Summary of the terminology. b) The target's
position in the pursuer's �eld of view a�ects its response, such as turn-
ing direction and response intensity. c) Proportional navigation is where
changes in either the pursuer's forward or angular velocities are propor-
tional to the size of the heading error. d) In simple pursuit the pursuer
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During interception, or parallel navigation, the pursuer heads towards
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against an external reference point. (Reprinted from [Gonzalez-Bellido
et al., 2016])
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and known constant values: its own acceleration, the size of the target, and the distance of
detection [Collett and Land, 1978]. However, these trajectories with anticipation are optimal if
the pursuer is much faster than the target and this one do not do quick turn, it is highlighted
by the small time of chase - under a second.

Dragon�ies are performing smart interception trajectories; their strategy consists of keeping
them in the accute zone of its eye, which leads to �y to the interception point [Olberg et al.,
2000,Olberg, 2012]. They seem to be endowed with a prediction capability to anticipate target
movements as their reaction time is very fast (∼ 26ms) [Olberg et al., 2007]; even under 4ms

was recorded in the head movements when the target moves at a constant speed and there are
no unexpected movements [Mischiati et al., 2015]. They are also able to predict the area of the
future target position when it becomes invisible because of lack of contrast [Dunbier et al., 2012].

It will require a lot of work to completely understand all the parameters at work during a
target interception, from the visual perception to motor control. We had learnt a lot on the
subject of visual processing but we are still not able to reproduce completely all the insects'
capabilities. In this short summary and during the robotic experiments, we did not even express
the di�culty of target tracking in cluttered environment and the implication in the interaction
between the tracking and optomotor systems, as described by [Collett, 1980].
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6.1 Accomplished work

During this thesis, the extension of the edge and bar localization processing unit (referred pre-
viously as LPU) was realized with an array of arti�cial ommatidia. It was established that such
algorithm can provide visual feedback for stabilization over a textured ground. Some limits were
also pointed when it comes to the linearity and scaling of the output when the FOV is too small.

A calibration process was proposed to linearize the output when a bar is identi�ed in the FOV
by using the neighboring photosensor pair. It could also provide the subtended angle as well as
the angular position of the bar. The algorithm yielded good results, but it was very sensitive
to the speed of the seen object and to the direction of light. Indeed, some shades could appear
and modify slightly the contrast and create an asymmetry between left and right contrasts of
the bar.

This solution was therefore abandoned for robotic application. Then, a work on the electric
�sh involving Gaussian sensitive receptive �eld neuron for a stimulus localization was thought to
solve partially the problem. Indeed, with a Weighted Sum of Gaussian like sensitivity function,
a linear output is provided. The same situation is encountered when an edge is seen in front
of a vibrating photosensor. It was therefore established that the Normalized Weighted Sum
leads to hyperacuity. Theoretically, the application is limited to edge localization, but can be
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applied to bars with limited error measurements (see section 6.2.4). The advantage is to avoid a
complicated calibration process to transform the LPU output into angular measurement.

This novel algorithm depicted in this PhD thesis was used for target localization. A known
cylinder was put on a rover and was pursued with a robot equipped with an active CurvACE
sensor named ACEbot. The two edges of the cylinder were tracked. As the size of the cylinder
is known, the subtended angle measurement, inferred from the edge positions, was enough to
recover the target distance. Then, ACEbot was able to pursuit the target.

Some biological comparison were made and it appears that the ACEbot behavior was very
close to the pursuit behavior of the hover�y. We showed also that a decoupled eye is not of
great interest in the case of a wide �eld of view with homogeneous accuracy. Indeed, having
a rotation of the eye enables to keep the target in the center of the acute zone in insects and
human. In our case, the resolution is homogenous, because the same algorithm is computed on
all the photosensors involved in the visual task. Hyperacuity has been observed in insect vision,
but not over a wide FOV. It seems that it is not needed and can be compensated with the head
movements. Indeed having a small hyperacute zone, identi�ed as a fovea can be su�cient to
solve most of the problem meet in �y, without requiring high computational load. Discussion
were made on the interception task and only two light modi�cations were made in the robot's
control system to make it able to perform such behavior. It can point toward the future location
of the target but another criteria depending on the target speed should be added to orients the
robot in the right direction, which was assumed in our experiments.

6.2 Future possible improvements and perspectives

6.2.1 CurvACE sensor: previous engineering trade-o� and possible improve-

ment in a future design

The CurvACE sensor has been nicely inspired by insect vision. It reproduces bio-inspired features
that are very interesting:

� A wide Field of View

� A Gaussian light sensitivity with a width at half maximum ∆ρ similar to the insects'
compound eye

� A spatial resolution ∆ϕ equal to ∆ρ, which enable an overlapping of the FOV of the
arti�cial ommatidia.

� A light adaptation at the pixel level

However, it has also some drawbacks mainly due to engineering trade-o�.

A - Engineering limitations

The Analog-to-Digital Converter (ADC) is not perfectly adapted to the tension measured by the
sensor. The measured voltage can range from 500 to 1500mV . But the lower bound of the total
ADC range is from 0V , reduces greatly the accuracy of the sensor due to the quantization. This
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issue came from the limited choice of ADC available in VLSI technology at the design time. But
for a next sensor design, it is a point that needs to be carefully considered.

The Signal-to-Noise ratio should also be improved. The size of both the optics and the pixels
could be a way toward this goal. If the optic diameter is increased, it means that more photons
can hit the pixel (it means decreasing the F-Number, equals to the focal lens over the diameter,
which in photography lead to brighter image). The other possibility is to increase the size of the
pixel. But keeping the Gaussian angular sensitivity thanks to speci�c focal lens and aperture
pattern, may make this option impossible in practice.

The other di�culty is the data rate possible through the SPI bus at the output of the sensor.
In practice, it limits the possibilities of the sensor and a trade-o� has to be made between the
number of pixels read and the frame rate. Therefore, the use of Region of Interest (ROI) is
required in most application, which is not user-friendly in addition to be binding. Maybe the
use of the camera standards could be used, as the Camera Link which can provide a bandwith
of 680MB/s, or the GigE Vision standard to replace the SPI bus. But the integration of a fast
camera link could be di�cult in terms of integration.

B - New groundbreaking techniques applicable to CurvACE

It was shown the possibility to go from a simple model of 1D world with simple hypothesis that
it is composed of edges and bars. But it has been also seen that this hypothesis does not always
hold and therefore a better algorithm should be found. I really think that going in the way of a
2D array of pixels with equals interommatidial angle could help to develop better algorithm to
deal with more natural patterns. A hexagonal layout of the photosensor allows such property.
But the assembly of columns mixed with a bent PCB would not be possible to create this new
kind of sensor.

As presented in the section 1.3.5, event-based camera are already on the market. One can
imagine to mix the technology and the knowledge of the compound eye with event-based tech-
nology. Indeed, the minimalist approach of using a compound eye to reduce the data with a low
spatial resolution could be mixed with the event-based principle, which reacts to visual scene
variation. It is also a way of reducing the data to be processed but without losing information,
as it updates only pixels with a changed value. A such sensor would be of a great interest for
small robotic application.

In the future, it might be possible to print a new kind of arti�cial compound eye thanks to
3D printers. Today, it is possible to mix di�erent material with one 3D printer and produce
electronic devices including simple display [Willis et al., 2012]. Moreover, it is already possible
to print optics thanks to 3D printer (see Printoptical ©Technology for example). Maybe in the
future a spherical arti�cial compound eye would be realizable including optics and electronics.
Even if it is not ready to use and need some assembly process, this new way of manufacturing
complex designs is maybe the future of these arti�cial compound eyes.

6.2.2 Discussion about demodulation processing

A - New solution inspired from neural networks

As shown by Carriot [Metzen et al., 2015], the primate vestibular system is able to discriminate
di�erent frequency of a signal. Therefore, it can code the amplitude of the carrier signal, which
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can be considered as an envelop detector.

[Roberts et al., 2015] shows also that training neuron to perform temporal correlation is
possible, which could open the way to the reproduction of a neural network able to perform
demodulation processing.

Moreover, the photoreceptor signals could be processed di�erently. Indeed, we are currently
using a known carrier frequency and do a demodulation accordingly, but with a neural processing,
it could be possible to have the frequency of the carrier and the amplitude of the signal. It could
lead to a phase descriptor to have the position of the retina in phase with the visual signal. It
could also be a possible solution to avoid the use of an absolute operator in the demodulation
process to have the ON-OFF or OFF-ON information. It was highlighted in [Juston et al., 2014],
that the phase signal contains information. Moreover, it could be possible to use a di�erent
speed pro�le which would lead to a variation of frequency according to the position of the retina
in order to discriminate di�erent objects' position. Or another thing would be to explore the
possibility of a feedback loop on the scanning amplitude according to the visual signal.

B - Bio-inspiration relevance

It should be very interesting to just think about what are the parameters that can be controlled
in the vibration actuation. Indeed, the parameters are the frequency, the speed pro�le, the
amplitude and the direction of the scanning. For now, only 1D scanning was experimented on
real sensor. Works were made with a triangular and exponential speed pro�les to detect edge
location [Viollet and Franceschini, 1999] and perform obstacle avoidance [Mura and Franceschini,
1996].

Then, di�erent speed pro�les were investigated in [Kerhuel, 2009]. It was highlighted that
to work on the amplitude modulation, it was a pure sinusoidal signal that provide the best
output, because only one frequency is stimulated. But Kerhuel showed that an adaptation of its
algorithm could also work with the vibration generated by the robot itself.

R. Juston, in [Juston, 2013], used directly the improvement of using a larger scanning am-
plitude that could enhance the signal because the variation in one period is bigger and the
signal-to-noise is reduced at a given noise level (see remark3). Moreover, with a higher ampli-
tude at the same frequency, the rotational speed of the eye is increased, which leads to a signal
of higher amplitude. In those applications, it is assumed that nothing moves during a period
of scanning hold. It leads to the observation that to increase the dynamics of the robots, the
frequency needs to be the highest possible (in the last experiments in the lab, around 50Hz). It
is not close to the original observations, which show frequencies between 5− 7Hz [Franceschini,
2014].

The observation made by Northrop seems to shows a correlation between the speed of the
target and the amplitude of the vibration [Northrop, 2000]. However, the feedback loop on the
amplitude of the scanning regarding some parameter on the signal received was not investigated
on arti�cial eye. But a research in this direction could open new hypothesis on the visual
processing of the �ies.
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6.2.3 A challenge of visual perception: Vision in the dark

By using powerful Infrared (IR) leds, it becomes possible to see in the dark, when dark is de�ned
from a human perspective. As the spectral sensitivity of the photo-diodes used in CurvACE is
in the red and near IR light, the visual sensor can still see though the human eye can no longer
do. Thus, two main situations of interest can be considered with IR leds.

A - IR leds as headlight

The �rst possibility is to use the IR leds on the robot and emit the light in the forward direction.
The IR leds are used the same way as it is for headlight in a car or active IR cameras. The light
is re�ected by the object to track, which makes it visible. The active CurvACE sensor and the
processing remain the same in this situation.

Another possibility is to modulate the infrared signal and adapt the processing after the
photodiode transduction with a peak �lter centered at the frequency of the modulation. This
processing does not require any mechanical vibration which is replaced by the LED �ickering.

B - IR leds as beacon

The second possibility is to use the IR led as beacon. This principle is already used by hypercube
sensor [Raharijaona et al., 2015], presented in �gure 6.1. The IR light beacon is modulated at
a known frequency and the appropriate demodulation processing is done. With 3 photodiodes,
the 3D orientation of the beacon relative to the sensor can be computed.

If the beacon is a �xed IR light source, the vibration is required with CurvACE to avoid
fading due to the adaptation. The processing could however remain the same. The beacon
would be seen as a point in the FOV. In one dimension, it is similar to a tiny bar with high very
high contrast. A simulation was done with this hypothesis with the results presented in �gure
6.2. The simulated bar is 1mm large seen at a distance of 1.5m with a contrast higher than
99.98%. The beacon is perfectly seen but the demodulated signal is not a Gaussian anymore,
resulting in more linearity error after the NWS calculation.

6.2.4 Localization of a bar

A - With periodic scanning

Figure 6.3 shows the response of a 1D array of 6 photosensors rotating in front of a bar and
submitted to a sinusoidal scanning of an amplitude of ∆ϕ

2 at 50Hz. Di�erent subtended angle
are tested. It shows that for small subtended angle, relatively to the ∆ϕ parameter, the output
is quasi-linear. However, when the subtended angle gets closer to 2.∆ϕ, the NWS output is
becoming a staircase signal. It would not display any hyperacuity in such case.

It is interesting to notice that using only 2 photosensors to compute a Normalize Weighted
Sum (noticed NWS2) would provide a better linear approximation. The NWS2 signal plotted
in �gure 6.3c) is de�ned as follows:

NWS2 =
(i+ 1) · PhD(i) + i · PhD(i+ 1)

PhD(i) + PhD(i+ 1)
(6.1)
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Figure 6.1: a) Each side of the HyperCube sensor integrates one photosensor and an
analog ampli�er for the conversion of the photodiode current into an out-
put voltage. b) Front view, which gives an illustration of the azimuth ϕ
and the reference plane Πϕ. c) Front view, which gives an illustration of
the elevation angle Ψ and the reference plane ΠΨ. d) Top view with the
reference plane Πϕ, which is the plane through the IR LED and the optical
axes of the photosensor Ph1 and the photosensor Ph2. e) side view with
the reference plane ΠΨ, which is the plane through the IR LED and the
optical axes of the virtual photosensor (Ph1 +Ph2) and the photoreceptor
Ph3. (Reprinted from [Raharijaona et al., 2015])
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Figure 6.2: Simulated IR beacon seen at a distance of 1.5m by 6 photosensors sepa-
rated by an angle of ∆ϕ = 4.2◦ and rotating at an angular speed of 1◦.s−1

a) Demodulated signals of each photosensor according to the angular po-
sition of the eye. It could be seen that as the light is directly received
from the source, the SNR is higher than normal. b) Normalized Weighted
Sum calculated according to the position. It could be seen that the error
is under 2◦

.
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Figure 6.3: Simulation of a 6×1-array of arti�cial ommatidia centered in the middle of
the 3rd and 4th one, rotating in front of a bar with a subtended angle from
1.5 to 7.5◦. The visual parameter ∆ϕ and ∆ρ are both equal to 4.2◦. a)
Photosensor responses of the photosensors number 3 and 4. b) Normalized
Weighted Sum of the 3 photosensors selected for the Fused NWS signal
(here noticedNWS3), according to the position of the bar for di�erent sub-
tended angle. c) Normalized Weighted Sum of the 2 photosensors selected
(here noticed NWS2 and see equation (6.1) for de�nition). The selection
is based on the maximum of the sum of 2 neighboring photosensors.

It may need some improvements of the selection process, but it could lead to a better bar
localization than with 3 photosensors for some subtended angles.

Remark 4 It can be noticed that it is similar to the V ODKA algorithm [Kerhuel et al., 2012].

Let S = a−b
a+b . If you set N = S+3

2 , it would lead to N = 2·a+b
a+b , which is the de�nition of NWS2

in the case i = 1.

B - Without scanning

With the method described in chapter 3 (i.e. using a Look-Up table), it seems di�cult to get
the value of the subtended angle of a target. But still, the hover�y is capable of such behavior
(for example see [Collett and Land, 1975]). A new idea that has not been evaluated so far, is
to cancel the vibration of the eye in order to localize a small target. In the case of a sensor like
the M2APix [Mafrica et al., 2015], it is possible to see even in the case of no movement with a
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wide range of illuminance. It is possible because the adaptation process used the mean value
temporally �ltered as follows:

Vout = −K
Iph

Iph + Imean
+ VBG (6.2)

where K is a constant depending on conception parameters and VBG is the band-gap voltage.
As the Imean value is a low-pass �ltered sum of all the pixels current, it means that if 2 pixels

of the same chip see di�erent pattern, they will respond di�erently, even in the steady state
because the photodiode current is di�erent for the two pixel.
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rotating in front of a bar with a subtended angle from 2 to 8◦. The visual
parameter ∆ϕ and ∆ρ are both equal to 4.2◦. a) Photosensor responses
of the photosensors number 2 to 4. b) Sum of the 3 photosensors selected
for the Fused NWS signal, according to the position of the bar for di�er-
ent subtended angle c-e) Normalized Weighted Sum of the 3 photosensors
selected for the Fused NWS signal, according to the position of the bar for
di�erent subtended angle. c) The o�set of the photosensor response is not
removed. d) The constant value 1.81 (o�set in �gure a) is removed to each
photosensor signal before processing the NWS algorithm. e) The average
value of all the 6 photosensors at each sample time is subtracted to the
photosensor signals before processing the NWS algorithm.
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Figure 6.4 shows that the simulated response of an arti�cial ommatidia to a bar placed in its
FOV �ts well with a Gaussian function when the subtended angle is under 2∆ϕ. It highlights the
fact that the NWS algorithm can be used in such situation. In this simulation, the photosensor
response is the same as a linear one with the calculation presented in equation (6.2) at the
output. The value Imean is an averaging of all the pixel outputs, low-pass �ltered with a cut-o�
frequency of 0.5Hz.

The localization of the bar is quite well estimated thanks to the NWS method developed in
this thesis, once the o�set is removed. Without any o�set removed from the photosensors signal,
the output does not vary according to the bar's angular position. It indicates only which central
photosensors is used to see the bar. Two possiblities are provided and only real experiments
could help to choose one over the other. The �rst one is only subtracting a constant value
known thanks to calibration, here (1.81). The second one is to removed the mean value of all
the photosensor output after the ADC. The NWS Output shows a little discontinuity between
each triplet, but it seems to not depend on the subtended angle unlike the NWS ouptut with
a constant o�set. One limit here to mention is that it might work only for a constant ambient
lighting. During the variation of lighting, I do not know if the output would be reliable.

The sum of the 3 selected photosensors gives also an information about the size of the target,
but as it is not normalized according to the contrast, it could only give a relative measurement
and not absolute. An interesting feature of this parameter is also that the variation does not
depend on the position for the subtended angle values.

6.2.5 Toward 2D target localization

A - Localization of a spherical target with a 1D Vibration

By having a 2D array of photosensors, it would be possible to detect di�erent subtended angle
for each line and then to be able to detect the sphere. Theoretically, it seems feasible, but there
is a lower limit in the subtended angle that can be measured (should be greater than 2∆ϕ).

Line 1

Line 2

Line 3

Line 4

Line 5

Line 6

Line 7

a) b)

c)

Figure 6.5: Two size of sphere are seen in the sensor FOV, a) the bigger and b) the
smaller. The rectangles are representing the FOV of lines in a sensor like
CurvACE. c) Representation of both sphere with a possible identi�cation
of bars for each lines

Depending if the sphere goes toward or away of the sensor, the number of line that sees the
target will change. For the lines, that sees the top and the bottom of the sphere, the signal
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would be of less amplitude because the background would be also seen at every position. The
di�erence between the top and the bottom would help also as a symmetry indicator in height,
if the background is uniform or at a su�cient distance compared to the eye-to-target one. This
possibility implies a lot of calculation for maybe a small measuring range. For example for
CurvACE sensor, the size of the target should be big to be seen several lines of photosensors.
At a distance of 1m, the target should have a diameter larger than 30cm to be in the FOV of 4
lines.

B - Localization of di�erent target with 2D Vibrations

A circular scanning with one actuator A �rst kind of a 2D vibration could be a rotation
of the eye like described in �gure 6.6. The eye is mounted on a gimball assembly and can rotate
along 2 axes. It is a kind of miniature pantilt platform with a limited range in the rotation (It
can do pitch and yaw but no roll movement). The actuator is a motor placed behind the eye.
An eccentric shaft ended by a spherical joint implement the connection between the motor and
the frame of the eye, where a spherical hole is made. The sphere described a circular trajectories
and therefore, the eye is rotating and the visual axis is moving on a virtual conic surface. It
means that the eye could never point straight ahead (see �gure 6.7).

a) b)

Figure 6.6: a and b) are depicted a system to enable a vibration in 2 dimensions. The
sensor is mounted on a kind of a gimball assembly, but the only actuator is
a motor mounted on the static frame. An eccentric shaft with a spherical
joint allows the connection between the motor and the support of the
sensor. The orientation axis of the sensor, shown as a red bar, is moving
along a conic surface.

This setup would be very interesting in the case of circular target. If the target is aligned
with the eye, with the rotational scanning, no change would appear on the pixel at the center of
the rotation, if we have seven photosensors with a hexagonal shape for example (see �gure 6.7b).
In the same situation but with a slightly misaligned target, a variation would appear in the same
photosensor response and the phase compared to the phase of the neighboring photosensor would
be enough to detect the orientation of the target. This principle could be useful to detect with
a high sensitiviy a mechanical misalignment between a circle placed in front of the sensor.

Another squared layout of the photosensors could also be used to locate this same target (see
�gure 6.7c). In the aligned situation, the amplitude of the 4 photosensors should have the same
amplitude and would have a phase shifted of π/2 between each orthogonal pixel and π for the
pixel located in diagonal. The variation of amplitude and shift would be su�cient to locate the
target.
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b)

c)

a)

Figure 6.7: a) 5 positions of the previous 2D scanning system. The axis of vision of the
sensor describes a circle. b) What see a 2D-array of 7 photosensors with a
hexagonal layout for each position. c) In the case of a squared layout of 6
photosensors.

This setup could maybe make it possible to localize other shape of target, like squared or
rectangular ones.

In all these situations, the signal processing needs an appropriate design but there are not
far from the works done on demodulation and the edge/bar detector.

a) b)

Figure 6.8: 2D scanning with 2 actuators. Both are using an eccentric mechanism to
create an alternative rotational movements on 2 dimensions. The phase
and the frequency of the two motor can be either identical or di�erent to
modulate the orientation of the eye in di�erent manners. a) Front three-
quarter view b) Back three-quarter view. In both views, the red bar that
goes out of the sensor is the symbolize the visual direction of the sensor
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Two actuators for di�erent scanning possibilities A second kind of setup could be to have
2 actuators which would be closer to a bio-inspired solution. Indeed, the insect are endowed with
2 muscles (MOT and MOS) to create retinal movement 1.2.4. To make a visual sensor moves,
di�erent systems have already been developed like the gimbal system with 2 serial rotations.
But they are presenting the inconvenient property to not have the same dynamics along all the
axis of rotation. Another system that was designed to realize a target tracking [Manecy et al.,
2016], �ts this requirement. It could be inspiring for the 2D vibration objectives, but should be
miniaturized to increase the rotational speed needed for scanning system. Another example of a
bio-inpired eye was using three actuators, to reproduce the human eye dynamics and control [Liu
et al., 2015].

An attempt to implement a 2D scanning sensor is to reproduce the same 1D solution in the
orthogonal direction, as shown in �gure 6.8. The advantage is to have multiple possibilities of
scanning compare to the circular scanning presented for the tracking of a circular target (see
�gure 6.6). By activating one motor and turning o� the vibration of the second one, it would
provide the scanning in one direction. It could be the same for the orthogonal direction. The
drawbacks of this solution is that you really need the position of the motor of the steady axis to
know in which direction you are actually vibrating. By having the two motor scanning at the
same frequency, it is possible to replicate the rotational movement previously. Another possibility
would be to have one motor turning at a lower speed than the other and the scanning would
result in a zigzag trajectory to scan all the visual scene. A speci�c peak �lter on the motor
frequency could be enough to discriminate one dimension from the other and then localize a
rectangular target for example.

This design would be very interesting from a research point of view as it would enable to
explore the 2D active vibration with di�erent possible strategies.

C - Using color vision in target tracking

It is known that bees use color and various spectral sensitivities to locate �owers. Maybe, the
use of the color to enhance a contrast is useful in target tracking with low spatial resolution.

In the research of a target or even for stabilization, which where the application developed
during this thesis. The color signals were not used for these tasks. It is known that there are 7
to 8 receptors in the �y eyes 1.2.2. During our work, a limited range of the spectral sensitivy
was used, mostly the red one, but other sensitivity should be address.

The idea behind is for example to use the green signal, as the environment is mostly green
and the target is mostly black or brown. UV sensitivity might also be useful to discriminate
object of interest in a cluttered environment. Recognize the color could help in having a more
robust target tracking as the target would not be described only by the position of some edges.

6.2.6 Other possible experimental situations

A - Docking

As it was demonstrated, thanks to the localization of 2 edges, a robot is able to position itself
with respect to a cylinder. The same principle can be extended to a rectangular pattern on a
wall. Figure 6.9b presents the situation where the robot come close to a docking area, then it can
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a) b) c)

Figure 6.9: Setups that can be realized thanks to the localization of 2 edges a) First
possibility explained in chapter 4. It is the cylinder following b) Docking
in front of a rectangular pattern c) Crossing an aperture, like a door for
example.

use its localization algorithm to position itself with precision in the last phase of the docking.
This scenario could be interesting for an autonomous system which has to return to a recharge
station. In this situation, the system has to detect the approximate position of the two edges
to initialize the localization processing. This di�culty can be overcome if the wall contain only
the rectangular shape, as the robot moves in the approaching phase, the motion detector can
localize the edges.

A

L

B

d1 d2θ1
Ψ

θ2
θd2

θd1

O,

 OR 
(xR,yR)

X

Y

Figure 6.10: A robot approching two points marked A and B separated by a distance
L. OR is the position of the robot, ψ its orientation in the absolute frame.

A simple control ensuring θ1 = θ2 would ensure to end up between the two identi�ed points.
The heading of the robot is always pointing in between the 2 points. With the notation given in
�gure 6.10, the inequality becomes equivalent to:

θ1 = θ2 ≡ θd1 − ψ = θd2 + ψ (6.3)

knowing that: 
tan(θd1) =

−xR
−YR

tan(θd2) =
−xR
L+ YR

(6.4)
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Therefore, the equation (6.3) is true when the following is met:

−xR
−YR

=
−xR
L+ YR

+ 2ψ (6.5)

This equality is true for yR = −L
2 ;xR ∈ R in the case where ψ = 0.

Thus, a strategy which maintains only θ1 = θ2 does ensure to �nish in the middle of the
marker only if the orientation of the robot is perpendicular to the line passing by the 2 points
A and B. However, to have the value ψ from only the angular measurements is not possible
instantaneously, even with the knowledge of L. Another information is needed, it could be a
third beacon or a magnetometer for example.

This task is perfectly known in current state-of-art with any pattern, [Crombez et al., 2015]
for example. However, in computer vision, it requires quite extensive computation resources.
The solution proposed here, would be simplest and would therefore requires lower computation
resources.

B - Navigation through doors (or gap or aperture)

When it comes to the task of crossing a gap, the situation can be seen as 2 edges on each side
that have a contrast with the background, as in �gure 6.9c. This scenario is very similar to the
docking problem and could have the same resolution.

Salaris et al. [Salaris et al., 2015] implemented a visual servoing to go through a door presents
the di�culty and the best way to achieve it. The control law presented ensure to cross the door
axis perpendicularly and in the middle, in order to avoid any contact with the wall. Then, the
control law should ensure to go through a gap with the best position to cross the gap safely, i.e.
without touching the obstacle. The visual cues are the angular position and the height in the
image plane of the 2 landmarks. The temporal evolution of the subtended angle, which derived
from the angular position, is also used. Salaris et al. provided also a comparison of its control law
to the human behavior facing the same situation based on previous experiments [Arechavaleta
et al., 2008], which shows very similar results.

The di�erence compared to the target pursuit is the detection of the edges of the doors
to initialize the localization processing. A possible solution could be to do a rotation back and
forth. For sure, it will be possible to localize edges, but the question "how to detect the contrasts
formed by the gap to the others if multiple contrasts are detected?" remains not trivial.

6.3 The bio-inspired approach

What we did during this thesis is to use a bio-inspired visual sensor to perform di�erent tasks. Of
course the performances achieved are not always comparable to the computer vision ones. But
regarding other metrics as the computational load and the lightness of the bio-inspired solution
can also be incomparable as well. The technology is increasing which reduces more and more
the today's di�erences in terms of compactness and payload. But the e�ciency is more often in
favor of the bio-inspired solution. Indeed, as solving a complex problem is always a matter of
trade-o�s, nature has optimized its living beings to be the best adapted to their ecosystems.

Being able to design bio-inspired systems which are achieving similar performance to their
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biological counterparts is also a proof that nature has been well understood. If not, some as-
sumptions can be made and provides another hypothesis for the biologists.

The solution can even contain some uncertainty, as realizing di�erent tasks perfectly at each
iteration imply hard constraints on the design which do not cope with power e�ciency or small
time response. In an open world in constant evolution, make some mistakes and adapt its
behavior for the next try seems to be the absolute solution to every problems.
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Appendices

A Lexical terms

A.1 Optic Flow

Optic �ow can be de�ned as the motion of di�erent objects or contrasts perceived by an observer.
It is characterized by an amplitude which is the speed perceived and the orientation which provide
the direction of the motion.

In a steady environment, if the observer is only rotating, the optic �ow perceived will only
depend on the speed of motion and the axis of rotation. However, for a translational movement,
the optic �ow will depend on the the speed and the distance of the features viewed. The optic
�ow �eld are shown for both cases in �gure A.1. It is highlighted that close to the rotational
axis, the perceived motion is small whereas is maximum on the orthogonal directions. For the
translational movements, it is highlighted that the optic �ow is null in the direction of motion.

a) b) Rotation c) Translation

Figure A.1: a) Schematic representation of the optic �ow vector �eld generated on the
retina of an agent during a landing phase. Each vector magnitude and
direction represents the angular speed of this point of the environment.
The point right in front of the agent where the angular speed is zero is
called the focus of expansion. Reprinted from [Gibson, 1951].
Optic �ow induced during a rotation about a horizontal axis (b) or an
upward translation along the vertical body axis (c). Reprinted from
[Karmeier et al., 2003].

Koendrick and van Doorn described the optic �ow mathematically [Koenderink and van
Doorn, 1987]. Their model gives the optic �ow output in the case of a moving observer and a
�xed object at a position P in the observer's frame. The motion of the observer is decomposed
into a translation

−→
T and a rotation

−→
Ω relative to an inertial frame. The optic �ow ω is:

ω =

(
(
−→
T · p̂)p̂−

−→
T
)

‖p‖
−
−→
Ω × p̂ (6)
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where p is the position vector of P , p̂ = p
‖p‖ is the unit vector describing the direction of p. It

can be noticed that ‖p‖ represents the distance to the object.

A.2 ON and OFF Contrasts

The de�nition of an ON contrast is the increasing of the light received by a photoreceptor,
meaning a dark surface is seen before a brighter one. An OFF contrast is the opposite as it is
the transition from a bright to a darker scene. The two kind of contrasts are depicted in �gure
A.2.

a) b)

Figure A.2: The blue arrow indicates the sens of motion meaning that in a) an ON
contrast is shown whereas in b) it is an OFF contrast.

A.3 Edge and bar

An edge is de�ned as the transition of two area with di�erent color making a contrast. A bar is
the succession of 2 edges in a small part of the �eld of view. It could also be called a stripe.

a) b)

Figure A.3: Presentation of 2 �eld of view seeing (a) an edge and (b) a bar.
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B Additional information on chapter 2

B.1 Experimental results of HyperRob attitude disturbance

In this part, we present a study of the in�uences of attitude disturbances on the position mea-
surement and how it is handled by the robot.

Pure attitude disturbances This experiment has for purpose to establish the e�ciency of
the gaze stabilization and to demonstrate that the position measurement is insensitive to roll
disturbances and roll movements.

To see the in�uence of roll disturbances on the vision output, perturbations were applied by
hand on the left wing, from bottom to up. It should be highlighted that it is the worst attitude
perturbation we can meet in real �ight condition. Indeed, it is a discontinuous perturbation
unlike a wind perturbation. During this test, the position controller was turned o� and the
robot position was locked with smooth stops to avoid robot's lateral displacement. The results
presented on the �gure B.4 show that the roll disturbances have a limited in�uence on the
vision output. As the amplitude of the disturbance is about 10°, the corresponding visual error
should be around 70mm for a planar pattern located at a distance of 400mm without any gaze
stabilization. However, the visual error shows a peak of around 15mm at each disturbance to
�nally come back to its initial measurement with an accuracy of ±5mm. So, the e�ect of the
decoupled eye is clearly seen with those results which prove the e�ciency of the VOR.
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Figure B.4: Roll disturbance rejection with �xed position above a naturally textured
pattern. a) The visual error of the robot is displayed in red. Without
any disturbances the robot is able to measure its position with a 3-mm
noise level. A disturbance implies a transient position error of ±20mm
due to parasite rotations of the eye because the roll compensation is not
perfect. But the position after the disturbances come back to the initial
measurement with a 5-mm accuracy. b) Attitude of the robot during
disturbances, the disturbances are rejected in less than 1 sec.
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Attitude disturbances in free �ight As a second test, the smooth stops were removed and
the position controller was activated to study the in�uence of roll disturbances on the hovering
performances. The attitude perturbations could be seen on the �gure B.5c at time 11.5s, 12.5s,
14.5s and 18s. As it can be seen, the roll disturbances imply lateral displacements which are quite
well measured by the sensor. As a results, even after 4 roll disturbances of di�erent amplitudes,
the induced lateral displacements are rejected in �gure B.5a in less than 5 seconds and the
reference position is reached with a 2-mm accuracy.
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Figure B.5: Roll disturbance rejection with arm free above a naturally textured pat-
tern. a) The pattern position and robot position measured by the Vicon
system. We can see that the disturbances are rejected in less than 5 sec-
onds and that any o�set are induced by this disturbances. b) Comparison
of the robot-pattern shift measured by the Vicon and the robot. As we
can see, the robot measure accurately its position even if the accuracy is
decreased during transient in attitude. c) Attitude of the robot during the
disturbances and the attitude set point yielded by the position controller.

B.2 Zoom on LPU output with translational movement

The non-linear and even non-monotonous measurements depicted in the circled areas in �gure
2.22 should be avoided in a localization algorithm. As the strip was constantly moving at the
same speed, the output should be linear with a constant slope, which is not the case. It is
highlighted by the �gure B.6 which depicts this in details. Taking the third pair as an example,
between the time t = 38.5s and t = 41.2s (the largest time where the pixel signals are in phase
meaning an edge should be seen), θi is not monotonous and there is a "bump" at the end, which
is interpreted as a back and forth movement. The use of such algorithm on a target tracking
would be di�cult, because a small number of pair would see the target at the same time.
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Figure B.6: Data from the experiments between the times t = 37s and t = 43s a)
Demodulated signals of the 6 pixels b) The output of the 5 Local Process-
ing Unit θi. On top, the colored line are drawn when the pixel signals of
the respective pair are in phase c) Integration of each ∆Pi with threshold
equal to 80000 (Zoom of the �gure 2.22b)
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C Additional information on chapter 3

C.1 Adding information on the tracking experiments

As it seems in the �gure 3.10 that the subtended angle measurement error is lower when the
tracking error is small (meaning that the angular position of the bar is well estimated). The
angular position and the subtended angle measurement were plotted according to the theoretical
values in �gure C.7. It reveals that by removing the point where the tracking error is above 0.5◦,
the largest subtended angle measurement error are mostly removed as well. It appears however
that the angular position of the bar selected are only in the range [−10, 15], which means that
the error are larger one one side. The theory of a potential shadow in that position is therefore
plausible. It is also interesting to note that the α measurement are mostly overestimated which
suggests that this error is not linked with a delay in the processing.
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Figure C.7: a-c) Measurements of the tracking experiment, plotted versus the theoret-
ical ones. a) is the orientation, b) the subtended angle and c) the distance.
d-f) are the same data but without the values out of a range from -0.5 to
0.5◦ of the angular position error. It shows that big errors still happen
at di�erent positions of the target and some of the subtended angular
measurement outliers are avoided.

C.2 E�ect of an asymmetry in the contrast of a bar

A bar is de�ned as the succession of 2 contrasts with in a small spatial angle. In the previous
studies, the two contrasts were always considered equivalent. Figure C.8 shows that the output
of the di�erence over the sum of two demodulated pixel signals is not symmetric in the case
where the left and the right contrasts are di�erent. The zero-crossing position does not occur at
the same position as well.

Considering such evolution in a map would be very di�cult. Indeed, it adds another variable
to the angular position and the subtended angle. The model of a bar is maybe not the best to
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Figure C.8: Simulation of a pair of photosensors rotating in front of a bar subtending
an angle of 3.37◦. The optical parameters are ∆ϕ = ∆ρ = 4.2◦. The con-
trast on left is constant and equal 80% whereas the contrasts is varying on
the right from 10 to 90% (according to Michelson's de�nition). a) Simu-
lated contrasts color in front of di�erent background from 10 to 90%. The
bar is centered at the 0◦ position. b) Responses of the second photosensor,
which is oriented at ∆ϕ

2 = 2.1◦. c) Simulated response of the di�erence
over the sum of the two photosensors according to the rotational angle of
the eye.
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evaluate the succession of multiple contrasts.
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D Additional information on chapter 4

D.1 E�ect of the vibration amplitude on the Normalized Weighted Sum

Form the variation of amplitude simulated in the section 4.3.2, it can be seen that for small
amplitudes of scanning, the maximum of the Gaussian is small. The larger is the scanning
amplitude, the higher is the maximum of the Gaussian. But at a value higher than ∆ρ/2, the
output is less close to a Gaussian function.

These variations have an impact in the Normalized Weigthed Sum processing. Figure D.9
shows the output of the NWS calculation with di�erent scanning amplitudes. It reveals that for
small ones, the output is too noisy to really have a good estimation of the edge position. For
larger amplitudes, the output is closer to a staircase than a line. The best compromise is found
for a value between 2.1 and 4.2◦, which means a value between ∆ρ

2 and ∆ρ.
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Figure D.9: E�ect of the amplitude of the vibration on the output of the NWS pro-
cessing. The simulation is done using 6 photosensors spaced by an angle of
4.2◦ and an acceptance angle ∆ρ also equal to 4.2◦. In black is plotted the
theoretical response. For small amplitude, the signal-to-noise ratio is too
bad and for large amplitude, the input signal is too far from a Gaussian
to give a linear response.

D.2 Details about ACEbot hardware

Figure D.10 sums up all the wirings of ACEbot and the communication between the di�erent
electronic boards.

D.3 Detailed presentation of the ACEbot control

D.3.4 - Introduction

The omnidirectional mobile robot is a system with three degrees of freedom. This characteristic
allows a movement in any directions with any orientations. This is a main advantage compared
to mobile robots with traditional wheels (which require a rotational movement before doing a
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Figure D.10: Electronic architecture of the robot

translational movement).

The Nexus omnidirectional mobile platform is equipped with Mecanum wheels which makes
him holonomous.

The control algorithms implemented in mobile robots are generally designed using the kine-
matic or dynamic model. The application of kinematic model in di�erent control laws is very
useful due to its structure that does not depend on dynamic changes in the mobile robot param-
eters (such as mechanics imperfections or wearing damages [Campion et al., 1996]). This is the
main reason why the kinematic model will be used in this work.

D.3.4 - Kinematic model

Presentation The Mecanum wheel mobile platform with mecanum wheels moves in any di-
rection and turn by varying the direction and speed of each wheel. Moving the four wheels
in the same direction causes forward/backward movement, running left/right sides in opposite
directions causes rotation and running front/rear in opposite directions causes side translation
(view Fig. D.11).

Nexus mecanum robot speci�cations are presented in Table 1.

Table 1: Parameters of Nexus mecanum robot.

Parameters Description Value Units

Rw Radius of wheel 0.050 m
L Half length L in axis X 0.15 m
l Half width l in axis Y 0.15 m
Iw Wheel's moment of inertia 5 e-4 kg ·m2

Iz Robot's moment of inertia 0.0402 kg ·m2

m Total mass of the robot 4.2 kg
mw Mass of the wheel 0.4 kg
Dθ Viscosity friction coe�cient of the wheel
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Figure D.11: Co-e�ect of 4 Mecanum wheels.

To formulate the kinematic model, which is the study of the movements of the mobile robot
according to its geometry, it will be assume that the mobile robot is a rigid frame equipped
with nondeformable wheels and that it is moving on a horizontal plane (Campion, 1996). The
representation of the robot is showed in Fig.D.12.

Figure D.12: Diagram of Nexus Mecanum Robot in the plane XY .

The kinematics equation re�ects the mapping relationship between the speeds of the four
Mecanum wheels and the center speed of the moving mechanism. The qualities of the Jacobian
matrix directly re�ect the natures and characteristics of the moving body. If the mobile bodyâ��s
Jacobian matrix of the kinematics equation is not fully ranked, then the moving mechanism will
have singularity, and this means the kinematic agencies will lose some degrees of freedom, so
that the moving mechanism cannot achieve a full-directional movement.

Each individual wheel contributes to the robot motion and imposes constraints on the robot
motion.

For the presentation of the kinematic model, several notations will be used for the robot and
wheels parameters, which are indicated in Table 2.
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Table 2: Notations for the wheels and the robot.

Notation Description

Viw(i = 1, 2, 3, 4) Velocity corresponding to wheel rotation.
Vir(i = 1, 2, 3, 4) Tangential velocity of the free roller touching the lo-

comotion surface.
Rw Radius of omnidirectional wheel.
ωiw Angular velocity of the omnidirectional wheel.
vx Linear speed component of the omnidirectional robot

on X.
vy Linear speed component of the omnidirectional robot

on Y.
ωz Angular velocity of the omnidirectional robot.
L Distance from each wheel shaft to the mass center of

the robot on the X axis.
l Distance from each wheel shaft to the mass center of

the robot on the axis Y.

Inverse kinematic model As described in [Tsai et al., 2011], [Tatar et al., 2014] and [Viboon-
chaicheep et al., 2003], the inverted kinematic model can be expressed thanks to �gure D.11.
Indeed, the wheels have a rotational speed ωiw which lead to the velocity vector Viw = Rw.ωiw.
Vir expressed the tangential rolling speed of the roller touching the ground. Therefore, the speed
vectors of the wheels in the global frame can be described as follows:

V1X = V1w + V1r · cos
(π

2

)
, V1Y = V1r · sin

(π
2

)
V2X = V2w + V2r · cos

(π
2

)
, V2Y = −V2r · sin

(π
2

)
V3X = V3w + V3r · cos

(π
2

)
, V3Y = −V3r · sin

(π
2

)
V4X = V4w + V4r · cos

(π
2

)
, V4Y = V4r · sin

(π
2

)
(7)

Moreover, the movement of the robot described by the translational velocities vx, vy and the
rotational velocity ωz expressed at the wheel position leads to the following equation:

V1X = vx − l · ωz , V1Y = vy + L · ωz
V2X = vx + l · ωz , V2Y = vy + L · ωz
V3X = vx − l · ωz , V3Y = vy − L · ωz
V4X = vx + l · ωz , V4Y = vy − L · ωz

(8)

Substituting (8) in (7) gives:

V1w = vx − vy − (L+ l) · ωz
V2w = vx + vy + (L+ l) · ωz
V3w = vx + vy − (L+ l) · ωz
V4w = vx − vy + (L+ l) · ωz

(9)

Then, expressing the equation (9) in a matrix form results as (10), which represents the
inverse kinematics equation:

158



D. ADDITIONAL INFORMATION ON CHAPTER 4

Vw = J0V0 (10)

where Vw = [V1w V2w V3w V4w]T is the wheel velocity vector and V0 = [vx vy ωz]
T is the

velocity vector in Cartesian coordinates.

The transformation matrix J0 is equal to:

J0 =


1 −1 −(l + L)

1 1 (l + L)

1 1 −(l + L)

1 −1 (l + L)

 (11)

Therefore, from the relation (10), the relation of the wheels angular velocities expressed as a
function of the robot velocities is the following:

ω1w

ω2w

ω3w

ω4w

 =
1

Rw


1 −1 −(l + L)

1 1 (l + L)

1 1 −(l + L)

1 −1 (l + L)


 vx

vy

ωz

 (12)

Forward kinematic model In order to express the robot velocity according to the wheel
speed, the inverse matrix of J0 should be determine. However, J0 is not square, so the pseudo
inverse matrix J+

0 is used instead:

J+
0 = (JT0 J)−1JT0 =

1

4

 1 1 1 1

−1 1 1 −1

− 1
L+l

1
L+l −

1
L+l

1
L+l

 (13)

As the relation J+
0 · J0 = I3 is veri�ed, J+

0 can be considered as the inverted model.

So, the forward kinematics equations could be expressed as follows:

V0 = J+
0 Vw (14)

or expressed in details, with the velocities of the omnidirectional robot vx, vy and ωz:

 vx

vy

ωz

 = J+
0


V1w

V2w

V3w

V4w

 (15)

Considering the relation Viw = Rw · ωiw the result can be expressed as:

 vx

vy

ωz

 =
Rw
4

 1 1 1 1

−1 1 1 −1

− 1
L+l

1
L+l −

1
L+l

1
L+l



ω1w

ω2w

ω3w

ω4w

 (16)

or as well:
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vx = Rw
4 (θ̇1w + θ̇2w + θ̇3w + θ̇4w)

vy = Rw
4 (−θ̇1w + θ̇2w + θ̇3w − θ̇4w)

ωz = Rw
4(L+l)(−̇θ1w + θ̇2w − θ̇3w + θ̇4w)

(17)

Transformation from Robot frame to Global frame The forward and inverse kinematic
models of the robot are formulated in a local frame, i.e the robot frame. The position and
orientation of the vehicle in the global frame (in the world) is denoted by the vector [xw yw ψ]T .
The transformation matrix between the local frame and the global frame is expressed by: ẋw

ẏw

ψ̇w

 =

 cosψ −sinψ 0

sinψ cosψ 0

0 0 1


 vx

vy

ωz

 (18)

substituting (13) and (18) gives the forward kinematic model: ẋw

ẏw

ψ̇w

 = J+(ψ)Vw (19)

where the transformed matrix J+(ψ) is de�ned by:

J+(ψ) =

 cosψ −sinψ 0

sinψ cosψ 0

0 0 1

 · J+
0 (20)

which can be simpli�ed in:

J+(ψ) =
1

4


√

2sinψ1

√
2cosψ1

√
2cosψ1

√
2sinψ1

−
√

2cosψ1

√
2sinψ1

√
2sinψ1 −

√
2cosψ1

− 1
L+l

1
L+l − 1

L+l
1
L+l

 (21)

and ψ1 = ψ + π/4.

Similarly, since the transformation J(ψ) exists its the pseudo inverse matrix J+(ψ), the
inverse kinematics model of the mobile robotics is expressed as follows:

Vw = J(ψ)

 ẋw

ẏw

ψ̇w

 (22)

where

J(ψ) =


√

2sinψ1 −
√

2cosψ1 −(L+ l)√
2cosψ1

√
2sinψ1 (L+ l)√

2cosψ1

√
2sinψ1 −(L+ l)√

2sinψ1 −
√

2cosψ1 (L+ l)

 (23)

and
J+J = I3 (24)
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Validation of the kinematic model In order to validate the model, an experiment in open
loop was made with the robotic plateform. It consists in applying wheel speed commands and
compare the model behavior and the real robot one. It should be highlighted that a PI controller
was designed in order to assess the wheel speeds, thanks to 4 optical encoders which gives the
rotational speed of each wheel. The robot wheel speeds were therefore perfectly controlled.

With the purpose of verifying the robot movements (forward, reverse, left, right, left slide,
right slide, clockwise and anticlockwise) a sequence with this kind of movements was imple-
mented, which lasts 120s in total. For each sequence, the speed reference of each wheel is either
1.5, −1.5 or 0 rev/s depending on the desired movement. The experimental results of the speed
are represented in �gures D.13. The estimated speeds are aligned with the experimental results
which shows that the model and the parameters are well estimated and measured.
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Figure D.13: Speed values of the Mecanum Nexus Robot
The blue line is the estimated value of the kinematic model and the green
line is the experimental result measured with motion capture system

D.3.4 - Control law design

Design We consider the control law presented in [Guerrero-Castellanos et al., 2014] to apply
at this particular case. It is a feedback linearization method with saturated control.

Let x = [x11 x12 x21 x22 x31 x32]T = [
∫
xw xw

∫
yw yw

∫
ψw ψw]T be the states vector and

u = [u1 u2 u3]T =
[
ẋm ẏm ψ̇m

]T
is the control vector. Now the representation in states space of

the system (18) in (25).
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ẋ11 = x12

ẋ12 = u1cos(x32)− u2sin(x32)

ẋ21 = x22

ẋ22 = u1sin(x32) + u2cos(x32)

ẋ31 = x32

ẋ32 = u3

(25)

With the purpose to delete the non-linear terms in the model (25), we consider the next
non-linear control de�ned in the next step, where ri are signals with i = 1, 2, 3.

u1 = cos(x32)r1 + sin(x32)r2

u2 = −sin(x32)r1 + cos(x32)r2

u3 = r3

(26)

With (25) and (26) becomes subsystems Σi with i = 1, 2, 3, where Σ1 and Σ2 are the trans-
lational movement equations and Σ3 is the rotational movement equation.

Σ1 :=

{
ẋ11 = x12

ẋ12 = r1

Σ2 :=

{
ẋ21 = x22

ẋ22 = r2

Σ3 :=

{
ẋ31 = x32

ẋ32 = r3

(27)

If we consider a stabilization point in the coordinated plane XY , we could propose a vector
with the desired positions zd = [z1d z2d z3d] = [xd yd ψd] and the vector of actual states [x y ψ]

then expressing the system in the error coordinates ei gives:

e1 = z1d − x ; e1int =
∫
z1d −

∫
x

e2 = z2d − y ; e2int =
∫
z2d −

∫
y

e3 = z3d − ψ ; e3int =
∫
z3d −

∫
ψ

(28)

x11 = e1int ; x12 = e1

x21 = e2int ; x22 = e2

x31 = e3int ; x32 = e3

(29)

On the other hand the saturation function σM is de�ned as:

σM (s) =

s, if | s |< M

sign(s) ·M, otherwise
(30)

Then the signal control ri is expressed in (31), where the ai1, ai2 are the poles of the system
in closed loop if we consider the linear part of the control.

ri = σMi3

(
żid+σMi2

(
ai1xi2 + σMi1(ai2xi2 + ai1ai2xi1)

))
(31)
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According to (31) the values of control signals are:

r1 = σM13

(
ż1d+σM 12

(
a11x12 + σM 11(a12x12 + a11a12x11)

))
r2 = σM23

(
ż2d+σM 22

(
a21x22 + σM 21(a22x22 + a21a22x21)

))
r3 = σM33

(
ż3d+σM 32

(
a31x32 + σM 31(a32x32 + a31a32x31)

)) (32)

Note that in the case of a stabilization to a given point, the error derivative is zero, which is
not true in the case of a tracking task.

Determination of the parameters Using equation (26) and the value of the conditions for
the limits, and assuming that the same dynamics in the X and Y axis is needed M13 and M23

should be equal. The signal control u becomes:

| u1 | ≤ max(M13,M23,

√
2

2
(M13 +M23))

| u2 | ≤ max(M13,M23,

√
2

2
((M13 +M23))

| u3 | ≤M33

(33)

Remark 5 The aim of this remark is to explain how the limits were designed. Using equation

(26) and the value of the conditions for the limits, the signal control u becomes:

| u1 | ≤ max(M13 · cos(x33) +M23 · sin(x33))

| u2 | ≤ max(−M13 · sin(x33) +M23 · cos(x33))

| u3 | ≤M33

(34)

To determine the maximum of u1, let de�ne f(x) = M13 · cos(x33) +M23 · sin(x33), with here

x = x33. Therefore, f ′(x) = −M13 · sin(x) + M23 · cos(x). So, to have the maximal value, the

equation f ′(x) = 0 should be solved and f ′′(x) <= 0 should be veri�ed.

The solution of the �rst equation is:

f ′(x) = 0 ⇔ 0 = −M13 · sin(x) +M23 · cos(x)

⇔ 1 =
M13

M23
· tan(x) if M23 6= 0 and x 6= π

2

⇔ x = arctan

(
M23

M13

)
if M13 6= 0

(35)

and the inequality:

f ′′(x) ≤ 0 ⇔ 0 ≥ −M13 · cos(x)−M23 · sin(x)

⇔ x ≥ arctan

(
M13

M23

)
(36)

So, a possible solution is M13 = M23. It is the reason why the equation 33 could be written.

With the equations (33) and (12) it get the conditions to limit the angular speed of the
wheels.
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| θ̇1 | ≤ 1
Rw

(u1 − u2 − (L+ l)u3)

| θ̇2 | ≤ 1
Rw

(u1 + u2 + (L+ l)u3)

| θ̇3 | ≤ 1
Rw

(u1 + u2 − (L+ l)u3)

| θ̇4 | ≤ 1
Rw

(u1 − u2 + (L+ l)u3)

(37)

If we consider that the maximum speed of each wheel is 1.5 rps so θ̇i = 9.4248 rad/s.

In this case, to satisfy the equation (37) the limits Mij for i, j = 1, 2, 3 are described in (38).
The constants for each signal control are considered as a11 = 22.5, a12 = 0.0225, a21 = 22.5, a22 =

0.0225, a32 = 45.0, a33 = 0. These values permit that the trajectories are not far of linear region
and guaranty the stability of the system.

M11 = 0.54 M21 = 0.675 M31 = 0.9360

M12 = 2.5515 M22 = 2.835 M32 = 5.256

M13 = 7.0425 M23 = 7.0425 M33 = 1.5

(38)

To sum up, �gure shows the control structure with a feedback position given by a motion
capture system. This will be replace in the section with the sensor.
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Figure D.14: Robot control architecture

Validation

Stabilization at a given position The �rst validation experiment shows the robot's
capability to reach a an objective position from any arbitrary initial position. Figure D.15 shows
the results for one test.

The e�ect of the saturated control is clearly seen because of the slew rate in the position
response in X and Y. Indeed, in a non saturated control, one could expect an exponential or an
underdampded response. But here, the saturation is well designed according to the limitation of
the actuators.
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Figure D.15: a, b, c) Position of the robot in the global frame versus time. It is
respectively the position in X, Y and yaw position.
d) Position of the robot in the XY plan

Tracking response The second validation consists in following a trajectory, equivalent to
following a moving point.

0 50 100 150
−2

0

2

Position

time [s]

X
 p

o
s
it
io

n
 [

m
]

0 50 100 150
−2

0

2

time [s]

Y
 p

o
s
it
io

n
 [

m
]

0 50 100 150
−100

0

100

time [s]

P
s
i 
[°

]

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Position

X position [m]

Y
 p

o
s
it
io

n
 [

m
]

Figure D.16: a, b, c) Position of the robot in the global frame versus time. It is
respectively the position in X, Y and yaw position.
d) Position of the robot in the XY plan

Figure D.16 shows the good following behavior of the circle. Even if the orientation of the
robot is not tangential to the circle.

D.4 Control Law especially designed for target tracking

As seen in the section 4.7.2A, the target tracking is not the optimal one for this task. Indeed, the
controller we reused in this study was �rstly designed for position tracking in an absolute frame.
Therefore, improvements are possible. We will present here a solution for a following situation
with simple robots, without dynamic limitation. The two robots can rotate and go forward, as
the pursuer lateral movement are inhibited, it is a relevant scenario compared to the real one
presented in chapter 4.
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D.4.4 - Theoretical scenario: known target inputs

This scenario is greatly inspired by an exercise found in the book "Mobile Robotics" [Jaulin,
2015].

Scenario explanation Let us consider two robots described by the following state equations:
ẋ1 = u1 cos θ1

ẏ1 = u1 sin θ1

θ̇1 = u2

and


ẋ2 = v1 cos θ2

ẏ2 = v1 sin θ2

θ̇2 = v2

(39)

In this scenario, robot N1 has for objective to follow the robot N2 (see �gure D.17). These 2
robots are able to rotate on their own position and go forward and backward. This situation is
similar to the one mentioned in section 4.5. Indeed, the target robot cannot do sway movements,
as well as the pursuer with the control law used.

In this situation, the hypothesis of known target inputs is made. It is relevant in the case of
leader-follower scenario, not really for target tracking but some estimation can be made in order
to partially compensate for this unknown situation.

Figure D.17: Scheme of the scenario, a robot N1 follows a target robot N2. (copied
from [Jaulin, 2015])

Problem formulation Let X = [x, y, θ] be the position of robot N2 in the coordinate system
of the robot N1. It is expressed as follows:
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X =

 x

y

θ

 = R1 ·

 x2 − x1

y2 − y1

θ2 − θ1

 (40)

where R1 is the rotation matrix from the absolute frame to the robot N1 one.

R1 =

 cos θ1 sin θ1 0

− sin θ1 cos θ1 0

0 0 1

 (41)

The system can therefore be derived:

Ẋ =

 ẋ

ẏ

θ̇

 = R1 ·

 ẋ2 − ẋ1

ẏ2 − ẏ1

θ̇2 − θ̇1

+ θ̇1 ·

 − sin θ1 cos θ1 0

− cos θ1 − sin θ1 0

0 0 0

 ·
 x2 − x1

y2 − y1

θ2 − θ1

 (42)

with simpli�cation using equations (39), which gives the expression of ẋ2, ẋ1, ẏ2, ẏ1, θ̇2 and

θ̇1, and (40), for the expression of the matrix

 x2 − x1

y2 − y1

θ2 − θ1

, it leads to:

Ẋ = R1 ·

 v1 cos θ2 − u1 cos θ1

v1 sin θ2 − u1 sin θ1

v2 − u2

+ u2 ·

 − sin θ1 cos θ1 0

− cos θ1 − sin θ1 0

0 0 0

 ·R−1
1 ·

 x

y

θ

 (43)

Ẋ =

 v1 · cos(θ2 − θ1)− u1

v1 · sin(θ2 − θ1)

v2 − u2

+ u2 ·

 0 1 0

−1 0 0

0 0 0

 ·
 x

y

θ

 (44)

It could be expressed also as follows:

Ẋ =

 ẋ

ẏ

θ̇

 =

 −1 y

0 −x
0 −1

 · [ u1

u2

]
+

 cos(θ) 0

sin(θ) 0

0 1

 · [ v1

v2

]
(45)

Finally, we have the expression of the dynamics of the system depending on the inputs of
both robots and their relative positions.

Controller Design The dynamics of the system to control is expressed in equation (45).
The objective is to control the position of the robot N2 relative to the robot N1, whatever the
orientation of the robot N2. This position is completely described by the state x and y. In the
controller design, only these two states will be considered for the closed-loop control.

With the non linear transformation expressed in equation (46), the system can be assimilated
to Ẏ = U , which is an integrator.[

−1 y

0 −x

]−1

·

([
ẋ

ẏ

]
−

[
v1 · cos(θ)

v1 · sin(θ)

])
=

[
u1

u2

]
(46)
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Therefore, it is possible to have:

Ẏ = a0 · (W − Y ) + Ẇ (47)

with W , the variable expressing the setpoints, i.e. the relative position between the target and
the pursuer. Therefore, if we set the error ε of the system is equal to W − Y . The equation
becomes:

0 = a0 · ε+ ε̇ (48)

Let P (s) be the polynomial expressing the dynamics the complete system, with its corrector.

P (s) = s+ a0 (49)

With a pole placement method, the parameters of the controller can be set and the desired
dynamics of the system can be achieved.

Finally, the expression of the output of the controller is:[
u1

u2

]
=

[
−1 −y/x
0 −1/x

]
·

([
a0 · (w1 − x) + ẇ1

a0 · (w2 − y) + ẇ2

]
−

[
v1 · cos(θ)

v1 · sin(θ)

])
(50)

The dynamics of the response can be adjusted by varying the value of a0. The values w1 and
w2 are the setpoints relative position of the target and the pursuer. As we do not want any
di�erence of speed between the target and the pursuer, both the values ẇ1 and ẇ2 will be set
to 0. This designed controller is depending on the target's inputs, or expressed di�erently its
absolute speed expressed in the robot N1 frame.

D.4.4 - Comparison of 2 controllers: simulated results

De�nition of the controllers The controller presented previously in section D.4.4, will be
further named Omniscient Controller, because the inputs of the target are considered known.

In the experiment made, a similar controller was designed, taking also in account the limit
of the pursuer robot. It is similar to this one with the hypothesis of null speed of the target. It
will be later called Position Controller as only the relative position of the target is known.

Presentation of the tracking results A simulation gives the tracking response of the robot
N1 with the two controllers for the same target position. In this example, the target is moving on
a S-shaped trajectory at a constant forward speed (see �gure D.18) and the reference setpoints
are given to follow the target at a constant distance of 7m and an orientation of 0◦.

On the �gure D.18, the two controllers seems to give a very similar response. However, by
looking at the �gure D.19, it can be seen that the Position Controller does not converge to the
correct distance. The orientation is not constant also, though it is equal to the setpoint on
average.

In a pursuit scenario, the knowledge of the the target input are unknown. Therefore, the
response of the Omniscient Controller is only theoretical. The hypothesis of null inputs is seen
to be a solution that enable the pursuit. It can be su�cient in certain situation, as it enables to
keep the target close to the line-of-sight and at a close distance to the one desired, even if not
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Figure D.18: Pursuit of the robot N2 (i.e. the target) by the robot N1 (i.e. the
pursuer). The pose of the robots in the absolute frame are described
with on a) the positions along the x axis, on b) the positions along the y
axis and on c) the orientations. In light blue is the target pose and in blue
and green are the pose of the pursuer with the Omniscient Controller
and the Position Controller respectively

exact. It has been shown in section 4.5 that it is enough to keep the target in the FOV and to
follow it. However, it is seen that it is not the optimal response. The response could be improved
if the speed of the target could be either measured or estimated.

D.4.4 - Using a non-linear observer for a velocity estimator

In the experimental setup, the measured variables were the distance to the target noted d and
the orientation of the target in the pursuer frame noted ψ.

These two variables are expressed according to the state variables as follows:{
d =

√
x2 + y2

ψ = arctan 2
( y
x

)
− θ1

(51)

In the same manner, the expression of x and y according to d and ψ and their derivative:{
x = d · cosψ

y = d · sinψ
and

{
ẋ = ḋ · cosψ − dψ̇ · sinψ
ẏ = ḋ · sinψ + dψ̇ · cosψ

(52)

Replacing the expression in the state equation (45), it leads to:
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Figure D.19: Pursuit of the robot N2 (i.e. the target) by the robot N1 (i.e. the
pursuer). Here are depicted the relative distance between the robots
and the orientation of the target relative to the pursuer. In blue and
green are the response of the pursuer with the Omniscient Controller
and the Position Controller respectively.

 ḋ

dψ̇

θ̇

 =

 − cosψ 0

sinψ −d
0 θ − 1

 · [ u1

u2

]
+

 cos(θ − ψ) 0

sin(θ − ψ) 0

0 1

 · [ v1

v2

]
(53)

Then, the same method as presented in [Das et al., 2001,Das et al., 2002] the state vector to
be estimated is given by:

Ẋ = f(X, U,N)

θ̇2

v̇1

v̇2

ḋ

ψ̇

θ̇1


=



v2

0

0

−u1 · cos(ψ) + v1 · cos(θ − ψ)
u1·sin(ψ)+v1·sin(θ−ψ)

d − u2

u2


+N(t)

(54)

where U =

[
u1

u2

]
is the control input variable and N(t), the process noise. It is assumed

that v̇1 ' 0 and Ṅ ' 0. Moreover, the noise is assumed to follow a Gaussian distribution with a
zero mean and a covariance Q.
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The system output with sensor noise is given by:

Z(t) = h(X) + η(t) =

[
d

ψ

]
(55)

where η is also a noise source assumed to be zero-mean Gaussian with a covariance R
Therefore, an Extended Kalmann Filter algorithm can be expressed to estimate the state X̂

and its covariance P . An estimation of the output can be made as follows:

Ẑ = H · X̂ with H =

[
0 0 0 1 0 0

0 0 0 0 1 0

]
(56)

Estimate the target inputs seems to be the best option. The EKF should be completely
designed for our application, the matrices Q and R should be identi�ed. Moreover, a controller
should be designed to take the limit of the robot dynamics in consideration as it has been done
previously with the bounded control.
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E Additional information on chapter 5

E.1 Experimental pursuit with saccadic eye controller submitted to Ambient

Light Variations

The same experiments with the light variation, similar to what was done in section 4.5.6, was
carried out with the Saccadic Eye Controller. The experimental conditions are identical, it means
that the three tests of �gure E.20 were performed in a single experimental run, starting in the
dark, where the target was detected and followed up to the end of the arena before returning
close to the starting-point. The light was turned on when the target came to a stop. The pursuit
was repeated and the blinds of the robotic arena were �nally opened for the last pursuit.
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Figure E.20: Three di�erent following trajectories under di�erent ambient light con-
ditions. a) The trajectories of the center of inertia of the target and the
pursuer ACEbot are presented in green and orange, respectively. The
robots are drawn every 8s, with the full FOV of ACEbot in light blue,
and the measured subtended angle of the target in dark blue. b) The
orientation of the target in the FOV of ACEbot with the setpoint ε∗ in
blue, the measured angle εr in red and the ground truth in green. c) The
distance from the target, the measured distance and the ground truth
value in blue, red and green, respectively. d) Dynamic responses of the
light sensor shown in �g. 4.5a, re�ecting the changes in the ambient
lighting, which measured 100 Lux in 1 , 780 Lux in 2 and 1300 Lux in

3 . These responses show the robustness of the visual processing system
with respect to several light levels.

Figure E.20, it can be seen that the ACEbot always kept close to the Target, while keeping
it in its line of sight. The dark blue triangle shows the measured subtended angle.

During this experiment, the target was remotely controlled by hand, giving similar trajectories
and ACEbot, after detecting the Target, was able to follow it unfailingly. It can be seen from
�gure E.20 that the distance was accurately estimated and remained constant, although slightly
above the reference value. These performance are very similar the one obtain in section 4.5.6
without the decoupled eye.
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Résumé de la thèse en français

A Introduction

La robotique aérienne est capable aujourd'hui de plus en plus de prouesses techniques. Hier,
les applications militaires étaient les premières à recourir des aéronefs sans pilotes capables de
suivre une trajectoire dé�nie. Avec l'avènement des smartphones, combinant à la fois capteurs
et puissance calculatoire embarquée, il a été possible de réduire massivement les coûts grâce à
des économies d'échelle. Des quadrirotors sont apparues avec des applications industrielles telles
que l'inspection d'ouvrages d'art, la photographie aérienne et l'agriculture. Il n'est quasiment
plus nécessaire d'envoyer des grimpeurs pour monter sur les pilonnes électriques ou de grues pour
faire des prises de vue en hauteur.

Mais pour que la prise en main de tels engins soit possible par des non initiés qui les voient
comme des outils, pour prendre une photo par exemple. L'autonomie de tel système doit être la
plus grande possible, de la stabilisation par rapport à un point GPS jusqu'à suivre un sportif tout
en évitant les obstacles et autres objets en mouvement. Dans des environnements encombrés,
recevoir un signal GPS est impossible. Dès lors, des solutions de stabilisation par caméra sont
apparues. C'est une solution qui est assez gourmande en ressources calculatoires. Il y a encore
peu le rafraichissement était également un frein à l'exploitation des dynamiques rapides des
quadrirotors. Mais traiter toutes les images reçues à haut débit en temps réel reste un réel
challenge.

Ainsi, s'inspirer du vivant peut permettre de trouver des solutions à la fois e�caces et mini-
males. En e�et, les insectes volants tels que les mouches, les abeilles ou les libellules sont capables
de performances de vol assez extraordinaire pour le roboticien d'aujourd'hui. Ces animaux peu-
vent naviguer, éviter obstacles et prédateurs, chasser et même indiquer une source de nourriture
à leurs congénères. Ils sont capable de remplir ces tâches malgré leurs contraintes énergétiques.

Au cours de cette thèse, nous avons doté l'÷il composé arti�ciel CurvACE, qui reprend
certaines caractéristiques de l'÷il de la mouche, d'un système de vibrations mécaniques a�n de
lui appliquer des micro-mouvements à hautes fréquences (50Hz) (voir �gure A.1). J'ai contribué
au développement de nouveaux algorithmes de traitement des signaux visuels a�n d'e�ectuer
une stabilisation visuelle d'un robot aérien et un suivi de cible par un robot mobile.

B Un ÷il composé arti�ciel doté d'une vibration permettant de

stabiliser un robot volant

D'après les travaux de L. Kerhuel [Kerhuel et al., 2012], il a été démontré qu'à partir de deux
photorécepteurs soumis à une vibration, on peut localiser un front de contraste et une barre,
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Figure A.1: a) Schéma d'un oeil composé, montrant sa structure et ses caractéristiques
optiques principales, à savoir, la sensibilité angulaire gaussienne et l'angle
interommatidial ∆ϕ (adaptée de [Horridge, 1977]). b) Photo du capteur
CurvACE. c) Sensibilité angulaire de l'ensemble des photorécepteurs d'une
ligne (extrait de [Floreano et al., 2013]). d-e) Active CurvACE équipé de
son système de vibration, un moteur pas-à-pas avec un arbre eccentrique.
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Figure B.2: Algorithme de traitement visuel à partir des signaux de 8× 5 photorécep-
teurs. 35 "Local Processing Unit" (LPU) permettent de traiter les signaux
par paire a�n de donner une mesure de déplacement local. Chaque LPU
est composé d'une partie �ltrage pour démoduler les signaux de chaque
pixel. Ensuite, la division sur la somme est e�ectuée et un gain est ap-
pliqué en fonction du détecteur front/bar. La fusion des sorties des LPU
se fait grâce à un processus de sélection basée sur la somme des signaux
démodulés. Seules les 10 LPU ayant la plus grande somme sont utilisées
dans le calcul de la sortie Sfused qui en est une moyenne. Les données de
vitesse V̄x et de position X̄ sont calculées directement à partir du signal
Sfused. Modi�é de [Colonnier et al., 2015a].

la barre étant une succession de deux contrastes équivalents. Le traitement appliqué est une
démodulation des signaux visuels; cela correspond à e�ectuer un détecteur d'enveloppe après
un �ltrage passe-bande. Puis, la di�érence des deux signaux démodulés sur leur somme, appelé
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B. UN ×IL COMPOSÉ ARTIFICIEL DOTÉ D'UNE VIBRATION PERMETTANT DE
STABILISER UN ROBOT VOLANT

principe V ODKA permet d'obtenir une caractéristique en tangente hyperbolique par rapport à
la position d'un contraste. En revanche, la caractéristique est plus complexe et non monotone
dans le cas d'une barre. Cependant, la détection de ces 2 types de contrastes permet d'obtenir
une sortie monotone et quasi linéaire en appliquant un gain correspondant [Juston et al., 2014].
L'ensemble de ces traitements est résumé �gure B.2 et appelé "Local Processing Unit" (LPU).

Nous avons donc travaillé à l'élaboration d'un algorithme fusionnant les mesures reçues de 35
LPU a�n d'obtenir une localisation de di�érents contrastes en même temps et ainsi se localiser
par rapport à une surface plane texturée. La fusion est e�ectuée à partir des 10 paires qui voient
les contrastes les plus élevés. Une moyenne des 10 mesures du mouvement angulaire observées à
chaque pas de temps est intégrée pour donner un déplacement global par rapport à la position
initiale. Une mise à l'échelle est e�ectuée suivant l'hypothèse que la distance à la surface plane
est connue et constante (voir �gure B.2).

Cet algorithme a été testé sur un robot nommé HyperRob ayant pour objectif de se stabiliser
à une position précise au-dessus d'un panneau contrasté (ici une photo de branches de pins).
Le robot est accroché au bout d'un bras a�n de se déplacer latéralement suivant une trajectoire
circulaire dans le plan azimutal. Son ÷il découplé du corps permet de compenser une rotation
du robot en roulis et ainsi, grâce à un ré�exe de type vestibulo oculaire, de maintenir la direction
de visée toujours verticale. Cela permet au capteur de toujours être soumis à une translation et
à une distance constante du panneau (voir �gure B.3 pour une photo du robot).
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Figure B.3: a) Photo de CurvACE actif montrant la région d'intérêt utilisée pour
l'expérience, composée de 40 photorécepteurs (8 × 5). (Copyright P.
Psaïla) b) Photo du robot HyperRob équipé du capteur CurvACE ac-
tif. c) Setup expérimentale avec le robot �xé au bout d'un bras rotatif.
Le champ de vision du capteur de 33.6◦ × 20.2◦ est présenté. d-f) Résul-
tats du rejet de perturbations. Celles-ci sont appliquées à la main sur le
bras et le robot revient automatiquement à sa position initiale. d) Dé-
placement du robot en bleu par rapport au panneau immobile. e) Mesure
du déplacement vue par le robot en bleu et calculé à partir du système de
capture du mouvement Vicon. f) Mesure de la vitesse estimé par le robot
en bleu et en rouge par le système Vicon.

Le robot est ainsi capable de rejeter des perturbations en position (voir �gure B.3) et de
se stabiliser par rapport à un sol en mouvement. Des tests ont été e�ectués avec succès pour
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montrer la robustesse du système vis-à-vis des hypothèses avec une stabilisation au-dessus d'un
terrain en pente de 18.5◦ et également d'un terrain avec de faibles reliefs. De plus, il a été montré
qu'avec cet algorithme, le robot est capable de suivre une cible si celle-ci présente des contrastes
plus élevés que l'arrière-plan.

Malgré ces belles performances, notre algorithme sou�re de quelques limitations. En e�et,
pour des mesures locales, il n'est pas possible d'assurer une mesure monotone et linéaire par
rapport à tout type d'environnements visuels. Ainsi, si l'on souhaite réduire le champ visuel,
avoir une estimation �able du déplacement avec moins de paires devient impossible. Développer
une application impliquant une mesure de position de plusieurs éléments à di�érentes distances
est également très di�cile.

C Estimation de l'angle sous-tendu d'une barre a�n d'obtenir

une mesure linéaire de la position

Les limitations entrevues dans la partie précédentes sont en parties dues au fait que la localisation
de la barre avec le traitement V ODKA présente un pro�l non linéaire en fonction de l'angle sous-
tendu de la barre (c'est-à-dire l'angle que forme la barre dans le champ visuel).

Une calibration de cette caractéristique a été réalisée, à la fois en simulation et avec le capteur
CurvACE actif, pour obtenir une "map" des réponses en fonction de la position angulaire et de
l'angle sous-tendu.

E�ectuer une transposition de la "map" obtenues permet d'avoir la position ψ en fonction de
la sortie Svodka et de l'angle sous-tendu α. Ainsi, en utilisant les mesures Svodka de deux paires
voisines, il est possible d'obtenir une estimation de ces deux paramètres. En e�et, on obtient
deux fonctions donnant ψ en fonction de α. En trouvant la variable α qui permet d'annuler la
di�érence de ces deux fonctions, on résout le système et on retrouve ψ en utilisant l'une des deux
fonctions.

En simulation, les estimations obtenues ont une erreur inférieure à 1◦, à la fois pour l'angle
sous-tendu α et pour la position angulaire ψ sur des plages relativement larges, respectivement
ψ ∈ [−15◦ : 15◦] pour 6 photorécepteurs et α ∈ [5◦ : 9◦] correspondant à une distance comprise
dans l'intervalle [16 : 29cm] pour une barre de diamètre 25mm.

Avec le capteur CurvACE actif, la réponse de la paire centrale est quasi linéaire pour chacun
des angles sous-tendus, ce qui assure une estimation �able de la position angulaire de la barre.
La précision de l'estimation de l'angle sous-tendu de la barre revient donc à la sensibilité de la
mesure des paires voisines. On a donc pu observer qu'en condition statique, l'estimation était rel-
ativement �able. Mais lors d'une expérience de tracking d'une barre en mouvement, l'estimation
de l'angle sous-tendu a été assez imprécise, surtout dans les phases où celui-ci évoluait rapide-
ment. Plusieurs hypothèses peuvent expliquer cette mauvaise estimation. Le fait que l'angle de
vue change peut faire apparaitre des ombres derrière la barre, ce qui crée une dissymétrie entre
les contrastes à gauche et droite de la barre. Cette dissymétrie change la réponse de chacune
des paires, ce qui ne correspond plus aux conditions de calibration. La vitesse de la barre a
également une in�uence sur la démodulation, ce qui par la suite peut entrainer une variation par
rapport aux conditions de calibration.

Il apparait néanmoins qu'une telle estimation est possible, mais il faut alors des conditions
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D. LOCALISATION D'UN FRONT AVEC 3 PHOTORÉCEPTEURS

bien contrôlées et un capteur ayant un bon rapport signal sur bruit. Il est également montré
que l'utilisation de seulement 2 photorécepteurs est insu�sante pour estimer la position d'une
barre avec son angle sous-tendu. Mais une manière plus e�cace doit être trouvée pour réaliser
une telle performance dans n'importe quelles conditions.

D Localisation d'un front avec 3 photorécepteurs

La phase de calibration, évoquée précédemment, était fastidieuse sur un grand champ visuel et
une potentielle source d'erreur. Sur la base de ces résultats, j'ai conclu que la di�érence sur la
somme d'une paire de photorécepteurs n'est peut-être pas la meilleure solution dans le cas d'une
barre. La linéarité reste néanmoins un point à améliorer à la fois dans le cas d'une barre et dans
celui d'un front.

C'est à la suite de ce constat que j'ai proposé une autre manière de procédé a�n de localiser un
contraste. Les travaux d'Heiligenberg sur le poisson electrique se sont avérés très intéressants. Ils
montrent que la somme pondérée d'une ligne de récepteurs sensoriels ayant une sensibilité spatiale
gaussienne à un stimuli est une approximation linéaire de la position de ce stimuli [Heiligenberg,
1987, Baldi and Heiligenberg, 1988]. J'ai adapté la méthode à une application visuelle a�n
d'être robuste aux variations de contrastes et d'intensité lumineuse. De plus, il s'avère que 3
photorécepteurs seulement sont nécessaires à la localisation d'un seul front à chaque instant. Le
front étant visible uniquement par ces 3 photorécepteurs. Ainsi, le calcul de la somme pondérée
normalisée (appelée NWS) pour chacun des triplets est le suivant :

NWS(n) = ∆ϕ ·

n+1∑
k=n−1

k · PhD(k)

n+1∑
k=n−1

PhD(k)

+ bias (57)

où n correspond à l'indice du photorécepteur central du triplet concerné, PhD le signal démodulé
de chaque photorécepteurs et le biais correspond à une variable de calibration pour positionner
le 0 du champ visuel.
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Figure D.4: a) Réponses des sommes pondérées normalisées (NWS) des 21 triplets
en fontion de l'orientation de l'oeil (ψgaze) par rapport à deux front de
contrastes. La partie surlignée met en avant les parties utilisée après
l'étape de sélection b) Mesures fusionnées donnant la localization des deux
contrastes (en rouge) par rapport à la mesure théorique (en vert).

De plus, a�n de connaitre le triplet à prendre en compte, il faut assurer un critère de sélection.
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Ce critère C(n) est calculé pour le triplet qui voit le contraste au temps t, ainsi que ses 2 voisins
et le maximum permet de connaitre le triplet à utiliser au temps t+ 1.

C(n) = PhD(n− 1) + 2 · PhD(n) + PhD(n+ 1) (58)

Ce processus de sélection implique de connaitre la position initiale du contraste et de faire
une hypothèse de continuité. C'est-à-dire que entre deux pas de temps, le contraste vue par un
triplet ne peut pas avoir e�ectué un déplacement supérieur à 2∆ϕ.

E Application à un suivi de cible
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Figure E.5: a) Présentation du robot ACEbot (à gauche) suivant la cible, un cylindre
texturé monté sur un rover (à droite), à une distance constante. b) Schéma
de l'ensemble des paramètres utilisés dans la stratégie de commande.

Active CurvACE a ainsi été monté sur un robot nommé ACEbot a�n d'e�ectuer une tâche
de suivi de cible (voir �gure E.5). Ici, la cible étant un cylindre de diamètre 32cm posée sur un
rover. Les fronts formés par les bords du cylindre seront donc localisé grâce à l'algorithme de la
somme pondérée, évoqué précédemment. Sachant que le diamètre du cylindre est connue, il est
possible à partir de la position angulaire des deux contrastes d'obtenir la distance au cylindre.
Un asservissement a donc été réalisé, de manière à maintenir la cible au centre du champ visuel
et à une distance constante. Le suivi de la cible a été démontré sous des conditions d'éclairages
variables avec une bonne précision (voir �gure E.6).

On peut noter qu'aucune estimation de la vitesse de la cible n'est utilisée dans la loi de
commande du robot, ce qui peut engendrer un temps de réaction assez grand lorsque la cible
commence à bouger et une erreur statique en condition stabilisée.

F Comportement bio-inspiré : suivi de cible, détection et inter-

ception

La loi de commande d'ACEbot permet de maintenir la cible au centre du champ visuel ainsi
qu'une distance quasi constante. En reproduisant des trajectoires de la femelle syrphe Syritta

pipens L. observés [Collett and Land, 1975], on s'aperçoit qu'ACEbot suit une trajectoire très
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F. COMPORTEMENT BIO-INSPIRÉ : SUIVI DE CIBLE, DÉTECTION ET
INTERCEPTION
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Figure E.6: Trois trajectoires de suivi de cible suivant di�érentes conditions lu-
mineuses. a) Trajectoires des centres de la cible et de ACEbot respective-
ment en vert et orange. Les positions des robots est indiquées toutes les 8s
avec le champ visuel du capteur en bleu ciel et l'angle sous-tendu de la cible
mesurée par le capteur en bleu foncé. b) Erreur rétinienne de consigne,
mesurée et calculée à partir des positions des robots en fonction du temps,
respectivement en bleu, rouge et vert. c) Distance de référence, mesurée et
calculée, respectivement en bleu, rouge et vert, toutes tracées en fonction
du temps. d) Luminosité ambiente mesurée par un capteur de lumière em-
barqué sur le robot (voir �g. A.1d) pour les 3 phases. L'intensité moyenne
perçue correspond à 100, 780 et 1500Lux.

proche de celle du mâle. Le pro�l de la distance à la cible en fonction du temps est lui aussi
similaire. Ainsi, la stratégie adopté par le robot semble être très proche de celle du diptère.
Il semble donc que ce dernier ne fait aucune estimation sur la future position de la femelle et
cherche uniquement à maintenir celle-ci au centre de son champ de vision. Le maintien de la
distance se fait probablement en maintenant l'angle sous-tendu de la cible constant. Mais cette
hypothèse n'est pas évidente si l'on tient compte du fait que la femelle n'est pas une boule.

Une expérience a également été menée avec un ÷il découplé a�n de béné�cier d'une dy-
namique plus rapide de celui-ci comparé au robot. Cependant, la précision de la mesure est très
a�ectée par des mouvements rapides. En e�et, l'adaptation à la lumière, intrinsèque au capteur,
ainsi que les di�érents �ltres temporels, ne permettent pas une mesure de position correcte en
étant soumis à des mouvements rapides. C'est pourquoi un contrôle saccadé de l'÷il a été préféré,
une inhibition a été intégrée a�n de ne pas bouger l'÷il le temps que les �ltres convergent de
nouveau à l'image des saccades observées chez le singe ou la mante religieuse [Kirschfeld, 1994].
Mais, ce temps d'inhibition étant trop grand, il ne permet pas d'augmenter su�samment la
vitesse moyenne de rotation et ne présente donc que peu d'avantages dans notre application.

Durant cette thèse, j'ai aussi travaillé sur la capacité à détecter une cible en mouvement
avant de la suivre. Sachant que l'algorithme de localisation nécessite de connaître la position
initiale des photorécepteurs, cela permet d'éviter une initialisation manuelle. La stratégie utilisée
s'appuie sur le fait que chaque photorécepteur est sensible à une variation de luminosité. Ainsi,
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APPENDIX . RÉSUMÉ DE LA THÈSE EN FRANÇAIS
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Figure F.7: Comparaison entre une trajectoire observée dans la phase d'accouplement
des syrphes Syritta pipens L. (a) avec celles de suivi de cible d'ACEbot (b,
c et d). a) Les positions de la femelle et du mâle sont notées respectivement
en bleu et rouge avec un trait pour indiquer l'orientation du corps. L'écart
temporel entre 2 positions est de 40ms. b-d) En vert, la trajectoire de la
cible et en jaune, celle de ACEbot avec son orientation. Les positions sont
tracées toutes les 400ms.

lorsque la cible bouge à une vitesse su�sante devant le capteur et que deux contrastes sont
clairement identi�és, alors la poursuite peut démarrer. Un �ltrage passe haut est tout de même
réalisé a�n de supprimer la composante continue et un �ltrage passe-bas a�n de réduire le bruit
de mesure. Cette stratégie est proche des observations faites notamment sur la `mouche tueuse'
(Coenosia attenuata), qui montrent que leur probabilité de décollage est corrélé avec le rapport
de la vitesse de la cible sur sa taille. En e�et, si la cible est trop loin alors la vitesse perçue
est insu�sante pour obtenir un signal dépassant le seuil �xé et de plus son angle sous-tendu ne
dépassera 2∆ϕ. Il faut donc que la cible soit à proximité et avec une vitesse su�sante.

De plus, nous avons également pu montrer qu'en modi�ant la consigne de distance, il est
possible d'e�ectuer une interception de la cible. Une variation de l'angle de l'÷il permet aussi
d'optimiser la distance parcourue avant interception. Un travail plus important est néanmoins
nécessaire a�n de reproduire les trajectoires plus évolués de la libellule.

G Conclusion

Cette thèse présente des travaux utilisant un ÷il composé soumis à une vibration périodique lui
permettant de localiser des contrastes avec une hyperacuité. Il a ainsi été possible à un robot
aérien de se stabiliser au-dessus d'un panneau texturé avec une grande précision. Dans le cas
d'une barre, la localisation est plus complexe et l'estimation de l'angle sous-tendu grâce à une
calibration permet d'améliorer la linéarité. Mais, la mesure de celui-ci reste imprécise quand
la cible bouge et que les conditions di�èrent des conditions de calibrations. J'ai ainsi proposé
d'améliorer la linéarité de la réponse du traitement tout en évitant un recours à une étape de
calibration. Un nouvel algorithme basé sur une somme pondérée a été mise au point dans le cas
d'un front. Cette technique a été appliquée dans le cas d'un suivi de cible avec le maintien d'une
distance constante avec celle-ci. Les trajectoires du robot se sont avérées similaires à celle du
syrphe lorsque celui-ci suit une femelle. La stratégie du maintien de la cible au centre du champ
visuel sans recourir à une estimation de la vitesse de la cible semble donc être la solution adoptée
par le diptère.

Finalement, il a été montré que la vibration peut être utilisée pour améliorer l'acuité visuelle
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G. CONCLUSION

d'un ÷il composé arti�ciel. Cette technique a montré un grand intérêt car elle permet de localiser
un contraste avec précision sans recourir à un traitement gourmand en ressources calculatoire.
Mais son application dans des environnements plus complexes reste délicate. Reprendre les
expérimentations sur la mouche permettrait de mieux comprendre les situations où elle fait
appel à cette possibilité. La façon dont elle traite l'information visuelle reste vraisemblablement
di�cile à obtenir mais utiliser une autre méthode de démodulation pourrait permettre d'obtenir
la di�érenciation des contrastes ON-OFF inexistante aujourd'hui. Il reste encore beaucoup à
découvrir quant à l'utilisation de ces micro-mouvements rétiniens, à l'image de ceux observés
chez l'homme où leur utilité est encore sujet à débat [Rolfs, 2009].
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Hyperacute arti�cial compound eye: Robotic applications to stabilization and pursuit

ABSTRACT: Based on several studies, the �y retina is submitted to periodic micro-movements. Several sensors
were designed in the lab mimicking this principle. It was therefore established that this vibration could be used in the
localization of contrasts with precision and endowed the �y vision with hyperacuity. Inspired by the �y compound eye
properties, such as the Angular sensitivity and the periodic scanning, the sensors were able to localize a contrast very
precisely over a small �eld of view limited to only two pixels.

In this thesis, an arti�cial compound eye endowed with a wide �eld of view was used. First, an algorithm that
fused the local position measurements of di�erent photosensor (pixel + lens) pairs is proposed. It enables a robot named
HyperRob to hover above a naturally textured pattern.

Localizing a contrast precisely over the entire �eld of view remains di�cult with this �rst solution. But, using 2
pairs of photosensors, a second algorithm allows having, in the case of a bar, a more linear position measurement and
its subtended angle too. A calibration process was involved to have a map of the pair measurements relative to the
angular position and subtended angle of the bar. It showed some good results, especially in steady conditions, but also
a dependency on the contrasts seen and the illuminance in respect to the calibration setup.

Therefore, an e�ort was done in order to avoid a calibration process. A third algorithm was suggested using previous
works of Heiligenberg and Baldi. They established that an array of Gaussian receptive �eld can provide a linear estimation
of a stimulus position, thanks to a weighted sum calculation. Here, this approximation is modi�ed to be robust to ambient
lighting and contrast variations. An application to a target pursuit was made with a mobile robot named ACEbot. It
was able to reproduce pursuit behavior similar to the hover�y. An interception behavior was also showed.

Finally, an arti�cial compound eye with a coarse spatial resolution can be endowed with hyperactuity and enable a
robot to follow a target with precision. In this thesis, a step forward has been made toward bio-inspired target localiza-
tion and pursuit, allowing a better understanding of the strategy used by winged insects.

KEYWORDS: Bio-Inspiration, Vision, Hyperacuity, Robotics, Stabilization, Pursuit, Interception

×il composé arti�ciel doté d'hyperacuité : Applications robotiques à la stabilisation et
à la poursuite

RÉSUMÉ: Plusieurs études ont montré que la rétine de la mouche est soumise à des micro-mouvements périodiques.
Di�érents capteurs inspirés par ces observations ont été réalisés au laboratoire. Ils ont pu démontrer que ces vibrations
pouvaient être utiles dans une tâche de localisation de contrastes avec précision et ainsi doter la mouche d'une hyperacuité
visuelle. Inspirés par les propriétés optiques des yeux composés, les capteurs visuels reproduisaient la sensibilité angulaire
gaussienne et la vibration périodique de l'÷il de la mouche pour localiser un contraste très précisément avec un champ
visuel réduit à deux pixels.

Dans cette thèse, un ÷il composé arti�ciel programmable appelé CurvACE, doté d'un large champ de vision, est
utilisé. Tout d'abord, un nouvel algorithme permet de fusionner les mesures visuelles de position des contrastes issus de
di�érentes paires d'ommatidies (pixel et lentille). Grâce à cet algorithme, le robot HyperRob est capable de se stabiliser
au-dessus d'un panneau texturé.

Localiser un contraste de manière linéaire sur l'ensemble du champ visuel demeure toutefois di�cile avec cette
première solution. Ainsi, en utilisant 2 paires de photorécepteurs, un deuxième algorithme permet de localiser une barre
de façon plus linéaire en ajoutant la mesure de l'angle sous-tendu. Cet algorithme implique une calibration de l'ensemble
des réponses de chaque paire en fonction de la position angulaire et de l'angle sous-tendu de la barre. De bons résultats
sont obtenus, surtout en statique, malgré une certaine dépendance aux contrastes et à la luminosité ambiante vis-à-vis
des conditions de calibrations.

Ainsi, a�n d'éviter un processus de calibration, un troisième algorithme qui s'appuie sur les travaux d'Heiligenberg
et Baldi, a été proposé. Ces auteurs ont montré que la somme pondérée de plusieurs capteurs ayant un champ récepteur
gaussien pouvait fournir une estimation linéaire de la position d'un stimulus. Nous avons, pour la première fois, appliqué
une variante de ce principe à un ÷il composé arti�ciel a�n d'être robuste aux variations de luminosité ambiante et de
contraste. Une application à la poursuite d'une cible a été e�ectuée avec un robot mobile nommé ACEbot. Nous avons
pu reproduire un comportement similaire à celui observé chez le syrphe. Le robot a aussi montré qu'il était capable
d'e�ectuer des man÷uvres d'interceptions.

Finalement, un ÷il composé arti�ciel dont la résolution intrinsèque est faible, peut être doté d'une hyperacuité vi-
suelle et permettre de suivre une cible avec précision. Ces travaux ont ainsi conduit à proposer des stratégies bio-inspirées
pour la localisation et la poursuite de cible et de mieux comprendre les stratégies utilisées par les insectes ailés.

MOTS CLÉS: Bio-Inspiration, Vision, Hyperacuité, Robotique, Stabilisation, Suivi de cible, Interception
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